X. OOP & ADTs: Intro. to Inheritance X-1

X. OOP & ADTs: An Introduction to Inheritance
(Chap. 12)

A. Inheritance, OOD, and OOP (812.1 & 12.2)

A major objective of OOP: (to avoid re-inventing the wheel).

Ways we have done this:

* Write functions

* Build classes

* Store classes and functions in separately compiled libraries
» Convert functions into function templates

« Convert classesinto class templates.

Most distinctive way to achieve reusability in OOP:

. . Derive aclass from another class, reusing the work done in building
one class to build another classthat isjust avariation.

Example: Suppose a problem requires stack operations not provided in our St ack class.

“Old-fashioned” approach: Add new member functions to this class that implement the needed operations.

Bad: Can easily mess up atested, operational class, creating problems for other client programs

Object-oriented approach:

Good:

— Derived class (including its operations)
so need not reinvent the wheel

— Mistakes made in building Der i vedSt ack will belocal to it — original St ack class remains untainted
and client programs are not affected

Object-oriented design (OOD) isto engineer one's software as follows:
1. Identify the objects in the problem;

2. Look for in those objects,

3. Where there is commonality:

* Define ; and

These last two steps are the most difficult aspects of OOD.

X-2 X. OOP & ADTs: Intro. to Inheritance

Object-oriented programming (OOP): first used to describe the programming environment for

the earliest true object-oriented programming language.
Three important properties of OOP languages :

- , with the related concept of

B. Derived Classes

Problem: Create typesto model various kinds of licenses.

Critical question: What attributes do all licenses have in common?

Then store these common attributes:in a general (base) classLi cense:
cl ass License

{
publi c:
/1 Function menbers Display(), Read(),

private: /1 we'll change this in a mnute
| ong nmyNunber;
string nyLast Nane,
myFi r st Nane;
char nyMddl el nitial;
i nt nyAge;
Dat e nyBirt hDay; /] Date is a user-defined type

1

For the various kinds of licenses, we could include a data member of typeLi cense and then add new members:

class DriversLi cense
publi c:

private:

i nt nmyVehi cl eType;
string nyRestrictionsCode;

s

cl ass Hunti nglLi cense
{

publi c:

private:

sring thePrey;
Dat e seasonBegi n,
seasonkEnd; ;

X. OOP & ADTs: Intro. to Inheritance

cl ass PetLi cense
1
publi c:

private:

string myAni mal Type;
H

Inclusion works, but is"clunky" and inefficient.

Worsg, it's — It should bethat aDr i ver sLi ncense Li cense,

notaDriversLi ncense Li cense

Preferred approach:

Problem:

C++ solution:

Members declared to be , but they

remain inaccessible to programs or non-derived classes that use the class (except for friend functions).

So change the private sectionin classLi cense to a

cl ass License

{
publi c:
/1 Function nenbers Display(), Read(),

| ong nmyNumber ;

string nyLast Nane,
myFi r st Nane;

char nyM ddl el nitial;

i nt myAge;

Dat e nyBirt hDay;

};

X. OOP & ADTs: Intro. to Inheritance

Now we can derive classes for the more specialized licensesfrom Li cense:

class DriversLi cense

{
publi c:

pr.o'.[éct ed:
i nt nyVehi cl eType;
string nyRestrictionsCode;

H

cl ass Hunti ngLi cense

L
publi c:

pr ot ect ed:
sring thePrey;
Dat e seasonBegi n,
seasonkEnd; ;

H

cl ass PetLi cense

L
publi c:

privat e:
string myAni mal Type;

s

Classeslike Hunt i ngLi cense, Dri ver sLi cense, and Boat i ngLi cense aresaidto be

(or), and the class Li cense from which they are derived iscalled

the

We have used protected sections rather than private ones in these drived classesin caseit is necessary to derive "second-
level" classes such as:

cl ass MboselLi cense

{
publi c:

pr ot ect ed:
int theAntl er Maxi mum
i nt theBul | wi nkl eFact or;

X. OOP & ADTs: Intro. to Inheritance

Thisleadsto — usually picture as atree but with arrows is drawn from a derived class

to its base class:

License
Drivers Hunting Coe Pet
License License License
‘\ \ / ‘\
Car Unicycle Moose Dinosaur Dog Hamster
License License License License License License

General form of declaration of a derived class:

DerivedClassName : kind_of inheritance BaseClassName

{

/'l new data nenbers and functions for derived cl ass

}

ki nd_of _i nheri tance isusually the keyword ,

but it may be or

The Fundamental Property of Derived Classes:

. depends on the kind of

inheritance specified.

public public and protected, respectively
private private
pr ot ect ed protected

X. OOP & ADTs: Intro. to Inheritance

Most common is public inheritance

Can use public and protected members of base classin base class just as
though they were declared within the derived class itself.

It givesriseto the relationship:
If
cl ass Base : public Derived
{ Il ... menbers of Beta ...
H
Then
A

Thisisin contrast to the relationship (also called theinclusiong or containment relationship or class

composition). Thiswas the situation with our first attempt at modeling licenses. Another example is the relationship

betweenLi cense andDat e: A Li cense object hasaDat e object, but it is not a Dat e oject.

Design Principle:

For example, it is bad design to do the following just to get the members of one class into another:

cl ass BusDriver : public License

{ ...}
Rather, we should use:

cl ass BusDri ver

{

private:
Li cense nyLi cense;

A third relatioship between classesis the relationship: One class might simply use another class. For

example, aFee() member functioninali censePl at e class might have a parameter of type Dri ver sLi cense.

But this class simply usesthe Dr i ver sLi cense class—itisnotaDri ver sLi cense and it does not havea
Dri versLi cense.

It's not always easy to tell which isthe appopriate oneto use. Two useful tests in deciding whether to derive Y from X:

1. Do the operationsin X behave properly in Y ?

2. (The"need-ause-a' test): If al youneedisaY, canyou use an X?

X. OOP & ADTs: Intro. to Inheritance

Summary:

The OOP approach to system design isto:

1. Carefully analyze the objects in a problem from the bottom up.

2. Where commonality exists between objects, group the common attributes

into a base class:

3. Then repeat this approach “upwards’ as appropriate:

Once no more commonality exists, OO implementation then:

Attributes
Common
to Object 1
thru Object i

/]

Attributes
Common

to Object |
thru Object n

/S0

Object 1 Object i Object j Object n
Attributes Common
to Object 1 thru Object|n
/ ‘\
Attributes Attributes
Common Common
to Object 1 to Object |
thru Object i thru Object n

4. Proceeds from the top down, building the most general base class(es):

5. Theless-general classes are then derived from that base class(es):

Attributes Common
to Object 1 thru Object|n

Attributes Common
to Object 1 thru Object|n

A

.

Attributes
Common
to Object 1

thru Object i

~

Attributes

Common

to Object |
thru Object n

X. OOP & ADTs: Intro. to Inheritance

6. Derivations continue until classes for the actual objects in the system are built:

Attributes Common
to Object 1 thru Object|n

A

Attributes

Common
to Object 1

thru Object i

/N

\\
Attributes

Common
to Object |
thru Object n

7

Object 1 Object i

Object j Object n

7. These classes can then be used to construct the system’s objects.

C. Another Example:
Suppose we are told to write a payroll program.

Following the four OOD steps, we proceed as follows:

1. Identify the objects in the problem:

« Sdlaried employees
» Hourly employees

2. Look for commonality in those objects: what attributes do they share?

* |d number
* Name
 Department

3. Define a base class containing the common data members:

cl ass Enpl oyee

{
pr ot ect ed:
| ong nyl dNum /1 Enpl oyee's id nunber
string nyLast Nane, /1 " | ast nane
myFi r st Nane; /1 first nane
char nyMddl el nitial; /1 mddle initial
i nt nyDept Code; /1 departnent code
/1 ... other nenbers common to all Enpl oyees
publi c:
/1 ... various Enpl oyee operations ...
i

4. From the base class, derive classes containing special attributes:

a. A salaried employee class:
cl ass Sal ari edEnpl oyee :

{
publi c:

/1 ... salaried enpl oyee operations ...

pr ot ect ed:
doubl e nySal arvy;

H

X. OOP & ADTs: Intro. to Inheritance

b. An hourly employee class:
cl ass Hourl yEnpl oyee :

{
publi c:
Il ... hourly enpl oyee operations ...
pr ot ect ed:
doubl e myWeekl yWage,
myHour sWor ked,
myOver Ti meFact or;
i

Reusability:

Suppose Enpl oyee has an output member function Pri nt () :

voi d Enpl oyee: : Print(ostream & out) const

out << nmyldNum << ' ' << npylLastNanme << “, “ << nyFirstNanme << ' '
<< nyMddlelnitial << " " << nyDept Code;
}

In derived classes, we can overload Pr i nt () with new definitions that reuse the Pr i nt () function of class Enpl oyee:

voi d Sal ari edEnpl oyee: : Print (ostream & out) const

{
/linherited nember
out << "\n$" << nySalary << endl; /11 ocal nenber
}
ad
voi d Hourl yEnpl oyee: : Print (ostream & out) const
{
/linherited nember
out << "\n$" << nyWeekl yWage << endl /11 ocal nenbers
<< myHour sWorked << endl << nyOverTi neFactor << endl;
}

Note: A classDer i v derived from Base can call Base: : F() to reuse the work of the member function F() from the base
class.

Constructors and Inheritance:

Consider Enpl oyee's constructor:

/1 Explicit-Val ue Constructor

i nl i ne Enpl oyee: : Enpl oyee(long id, string last, string first,
char initial, int dept)

{

nyl dNum = i d;

myLast Name = | ast;
myFirstName = first;
myMddlelnitial = initial;
myDept Code = dept;

X-10

X. OOP & ADTs: Intro. to Inheritance

A derived classcan useamember -initializer list to call the base-class constructor to initialize the inherited data members
— easier than writing it from scratch.

/1 Definition of Sal ari edEnpl oyee explicit-val ue constructor

Sal ari edEnpl oyee: : Sal ari edEnpl oyee(long id, string last, string first,

char initial, int dept, double sal)
{
}
General form of Member-Initializer List Mechanism:
Derive: : Derive(ParameterList) : Base(ArglList)

// initialize the non-inherited nenbers in the usual

}

Initializations in a member-initializater-list are done first, before those in the body of the constructor function.

manner

Member-initializater list can also be used to initialize local data members in the derived class:

Datamember d of aderived class can be initialized to an initial valuei using the unusual function notation d(.i)

in

the member-initializer list.

Example:

Sal ari edEnpl oyee: : Sal ari edEnpl oyee(long id, string |ast,
char initial, int dept,

Enpl oyee(ld, last, first, initial,
{
}

Less common, however, than “norma” initidizationd =

D. Polymorphism:

Consider:
cl ass License
{
//--- Function Menbers
publi c:

void Print(ostream & out) const;

};.)/ end of class declaration

/1 Definition of Print
void License::Print(ostream & out) const

{. ..

/1 Definition of output operator<<
ostream & operat or<<(ostream & out, const

lic.Print(out);
return out;

}

dept),

string first,
doubl e sal)

i ; inthefunction body:

Li cense & lic)

X. OOP & ADTs: Intro. to Inheritance

A statement

cout << alLicense << "\n\n"
<< aHunti ngLi cense << "\n\n"
<< aDoglLi cense << endl

gives.

not:

Need

Use

12345 Bus Dri ver
Age: 30
Birthdate: 5/6/1969

00022 Esau of |saac
Age: 100
Bi rt hdat e: 1/ 2/ -6000

31416 Barney the Di nosaur
Age: O
Birthdate: 1/1/2000

12345 Bus Driver
Age: 30
Birthdate: 5/6/1969

00022 Esau of |saac
Age: 100

Birthdate: 1/2/-6000
Prey: Harts

Season: 1/1 - 12/31
Weapon: Bow & Arrow

31416 Barney the Di nosaur
Age: O

Birt hdate: 1/1/2000

Ki nd: Pur pl e

cl ass License

{

//--- Function Menbers
publi c:

void Print(ostream & out) const;

//--- Data Menbers
pr ot ect ed:
| ong nyNunber ;
string nyLast Nane,
myFi r st Nane;
char nyM ddl el ni ti al
i nt nyAge;

};..)/ end of class declaration

/1 Definition of Print
void License::Print(ostream & out) const

(...}

: Don't bind adefinition of Pri nt () toacall toPri nt () until runtime

X-11

X-12 X. OOP & ADTs: Intro. to Inheritance

/1 Definition of operator<<()
ostream & operator<<(ostream & out, const License & lic)

{
lic.Print(out);
return out;

}

Thisworks. The same function call can cause different effects at different times (or have many forms), based on the function to

which the call isbound. Such calls are described as (Greek for "many forms"),

Polymorphism is another advantage of inheritance in an OOP |language.

Thanks to polymorphism, we can apply oper at or << to derived class objects without explicitly overloading it for those
objects!

Another example:

A base-class pointer can !

So consider a declaration:
Enpl oyee * eptr;
Sincea Sal ar i edEnpl oyee is-an Enpl oyee, ePt r can point to aSal ar i edEnpl oyee object:
eptr = new Sal ari edEnpl oyee;
ept r can point to an Hour | yEnpl oyee object:
eptr = new Hourl yEnpl oyee;
For the call
eptr->Print(cout);
towork when ePt r pointsat a Sal ar i edEnpl oyee object, the function
Sal ari edEnpl oyee: : Pri nt () within that object must be called;
but when ePt r isapointer to an Hour | yEnpl oyee, the function

Hour | yEnmpl oyee: : Print () within that object must be called.

Hereis another instance where Pr i nt () must be avirtual function so that this function call can be bound to different function
definitions at different times..

By preceding a base class member function with the keyword vi r t ual ,aderived class can overload that function,

so that callsto that function through a pointer or reference will be bound (at run-time) to the appropriate definition.

Sometimes one may need a

PrototypeOfFunc ;

Then there is no definition of Func in the base class— called an — classes drived from
it must provide a definition.

X. OOP & ADTs: Intro. to Inheritance X-13

E. Heterogeneous Data Structures
Consider aLi nkedLi st of Enpl oyee objects:
Li nkedLi st <Enpl oyee> L;

Each node of L will only have space for an Enpl oyee, with no space for the additional data of an hourly or salaried employee:

L i -
empl emp?2 emp_n

— P __|_|.,

Such alist is a homogeneous structure: Each value in the list must be of the same type (Enpl oyee).

Now supposewemake L aLi nkedLi st of Enpl oyee pointers,
Li nkedLi st <Enpl oyee *> L;

Then each node of L can store a pointer to any object derived from class Enpl oyee:

L
E empl emp2 emp_n

\

v

. =N

Thus, salaried and hourly employees can be intermixed in the same list, and we have a heterogeneous storage structure.

Now consider:
Node * nPtr = L.first;
while (nPtr = 0)

nptr->data->Print(cout);
nptr = nPtr->next;

}

For the call
nPtr->dat a->Print(cout);
towork when nPt r - >dat a points at a Sal ar i edEnpl oyee object, the function
Sal ari edEnpl oyee: : Pri nt () within that object must be called; but when nPt r - >Dat a is a pointer to an
Hour | yEnpl oyee, the function
Hour | yEnpl oyee: : Pri nt () within that object must be called.

Hereis another instance where Pr i nt () must be avirtual function.

