Chap. 1 Software Development

|. Software Development (Chap. 1 — read)
5 phases of softwarelife cycle

A. Problem Analysis and Specification (81.1)
— Easy in courses, not alwaysin real world
— Statement of specifications becomes:
® theformal statement of the problem’ s requirements
® the maor reference document
® abenchmark used to evaluate the final system
Sometimes stated precisely using a formal method

B. Design (81.2)
Programs, libraries, classes:

In CS courses In the real world
small — £ afew hundred large systems — thousands of
lines of code lines of code
simple, straightforward complex

r‘h
@ Object-centered design:

1. Identify the objects in the problem's specification and their types.

2. |dentify the oper ations needed to solve the problem.

3. Arrange the operations in a sequence of steps, called an algorithm, which,
when applied to the objects, will solve the problem.

Datatypes.
e Simple
e Structured — data structures

Algorithms

= Different ones may work, but may not be equally efficient (pp. 7-8)
O(n) — grows linearly with size (n) of the input
O(1) — is constant — independent of size of input

More later about measuring efficiency

= Can't separate data structures and algorithms
Algorithms + Data Structures = Programs

= Properties of instructions (p. 9)
— Definite and unambiguous
— Simple
— Finiteness

= Usually written in pseudocode

» Canbe unstructured

Should be structured (pp. 10-12)

Chap. 1 Software Development

ALGORITHM (UNSTRUCTURED VERSION)

/*

©COoNoOO~WNE

PR R R
DWNRFRO

Algorithm to read and count several triples of distinct numbers
and print the largest number in each triple. +

Initialize count to 0.

Read atriplex, y, z.

If x isthe end-of-data flag then go to step 14.
Increment count by 1.

If x >y then go to step 9.
If y > zthen go to step 12.
Display z.

Go to step 2.

If Xx < zthengotostep7.
. Display x.
. Goto step 2.
. Display y.
. Goto step 2.
. Display count.

Note the spaghetti logic!

[

Algorithm to read and count several triples of distinct numbers
and print the largest number in each triple. +/

Initialize count to 0.
Read the first triple of numbersx, vy, z
While x is not the end-of-data-flag do the following:
a. Increment count by 1.
b. If x>yandx > zthen
Display x.
Elseif y > xandy > zthen
Display y.
Else
Display z.
c. Read the next triplex, y, z.
Display count.

Chap. 1 Software Development

C. Coding (81.3): Implementing the design plan in some programming language.

Integration: Combining program units into a complete
software system.
— What language?
— Programs must be correct, readable, and understandable
(therefore, must be well-structured, documented,
written in good style — read guidelines on pp. 15-18)
Why? seepage 15

D. Testing, Execution, and Debugging

Validation: checking that the documents, program modules, etc. produced
match the customer's requirements.

Verification: checking that products are correct, complete, consistent with each
other and with those of the preceding phases.

Validation: "Are we building the right product?’

Verification: "Arewe building the product right?"

1. Errors may occur in any of the phases:

— Specifications don't accurately reflect given information or the user's
needs/requests

— Logic errorsin algorithms

— Incorrect coding or integration

2. Different kinds of tests required to detect them:
Unit tests: Each individual program unit works?
Integration tests: Units combined correctly?
System tests: Overall system works correctly?

Chap. 1 Software Development

The"V" Life Cycle Model.

dnalyzing problem
and
formulating specifications

Staternent of
Specifications

Dezigning
the systern

Sy=tern
Flan

b

Cesigning and
coding rnodules

Unit testing:

------------------------------------- Final

Maintenance

f

System

’(ﬂ

System
testing

Integrated
MModules

}

Integration
testing

Program
Unit=s

Tested
FPrograrn Units

N S

Unit te=zting

— probably the most rigourous and time-consuming
— surely the most fundamental and important

3. Kinds of errors
— syntax
— linking
— run-time
— logica

4. Kinds of tests:

— Black box or functional test : Outputs produced for various inputs are
checked for correctness without considering the structure of the module
itself. (Program unit is viewed as a black box that accepts inputs and
produces outputs, but the inner workings of the box are not visible.)

—White box or structural test: Performance istested by examining its
internal structure. Test datais carefully selected so that the various parts of
the program unit are exercised.

Chap. 1 Software Development

5. Example: Binary search (pp. 19-23)

[* INCORRECT FUNCTION ----------mmmmmmm e e e o e oo oo o
Bi narySearch() perfornms a binary search of a for item

Recei ve: Itemand an array a having n itens, arranged
I n ascendi ng order

Pass back: found and md, where found is true and
md is the position of itemif the search
I's successful; otherwise found is fal se.

voi d Bi narySearch(NunberArray a, int n, El enentType item
bool & found, int & md)

int first =0, /1 first and last positions in sublist
last = n - 1; // currently being searched *)

found = fal se;

while (first <= last && !found)

md = (first + last) / 2
if item< a[md]

last = md,

else if item > a[md]
first = md;

el se

found = true

}

}

Black box test: Use n =7 and array a of integers:
a[0] =45
a[l] =64
al 2] =68
a[3] =77
a[4] =84
a[5] =90
a[6] =96

Test withi t em= 77 returns f ound = true,
Test withi t em= 90 returns f ound = true,
Test withi t em= 64 returns f ound = true,
Test withi t em= 76 returns f ound =fase

3.3.3.
aoo
o
N O A

But, . . ., must consider special cases:
e.g., searching at the ends of thelist: i tem£ 45,item?3 96

I tem=45: found=trueand m d =1 asit should.
I t em=96: doesn’t terminate; must “break” program.

White-box test would also find an error:
e.g., Usei t em< 45 to test a path in which the first conditioni t em < a[m d]
iIsalwaystrue so first aternative | ast = m d; isaways selected.
Usei t em> 96 to test a path in which the second conditioni t em> a[m d]

Chap. 1 Software Development

Isalways true so second alternativefirst = m d; isaways selected.
6. Techniques to locate error:
— Debugger (Project 1)

— Debug statements (p. 21): e.g.,
cerr << "DEBUG At top of while |l oop in BinarySearch()\n"

<< "first =" << first << ", last =" << | ast
<< ", md =" << md << endl;
Output:

DEBUG At top of while loop in BinarySearch()
first =0, last =6, md =3
DEBUG At top of while loop in BinarySearch()
first =3, last =6, md =4
DEBUG At top of while loop in BinarySearch()
first =4, last =6, md =5
DEBUG At top of while loop in BinarySearch()
first =5, last =6, md =5
DEBUG At top of while loop in BinarySearch()
first =5, last =6, md =5
DEBUG At top of while loop in BinarySearch()
first =5, last =6, md =5

— Tracetables (p. 22 & Lab 1A)

— Quick-and-dirty patches are bad! (p. 23)

E. Maintenance — pp. 23-24

— Large % of computer center budgets
— Large % of programmer's time

Why? Poor structure, poor documentation, poor style.

