
 Chap. 1 Software Development -1-

I. Software Development (Chap. 1 — read)
 5 phases of software life cycle

A. Problem Analysis and Specification (§1.1)
— Easy in courses, not always in real world
— Statement of specifications becomes:

→ the formal statement of the problem’s requirements
→ the major reference document
→ a benchmark used to evaluate the final system

Sometimes stated precisely using a formal method

B. Design (§1.2)
Programs, libraries, classes:

 In CS courses In the real world
 small — ≤ a few hundred large systems — thousands of

 lines of code lines of code
 simple, straightforward complex

 Object-centered design:

1. Identify the objects in the problem's specification and their types.

2. Identify the operations needed to solve the problem.

3. Arrange the operations in a sequence of steps, called an algorithm, which,
when applied to the objects, will solve the problem.

Data types:
• Simple
• Structured — data structures

Algorithms
• Different ones may work, but may not be equally efficient (pp. 7-8)

O(n) — grows linearly with size (n) of the input
O(1) — is constant — independent of size of input

More later about measuring efficiency
• Can't separate data structures and algorithms

Algorithms + Data Structures = Programs
• Properties of instructions (p. 9)

— Definite and unambiguous
— Simple
— Finiteness

• Usually written in pseudocode
• Can be unstructured
 Should be structured (pp. 10-12)

 Chap. 1 Software Development -2-

 ALGORITHM (UNSTRUCTURED VERSION)
/* Algorithm to read and count several triples of distinct numbers

and print the largest number in each triple. */

1. Initialize count to 0.
2. Read a triple x, y, z.
3. If x is the end-of-data flag then go to step 14.
4. Increment count by 1.
5. If x > y then go to step 9.
6. If y > z then go to step 12.
7. Display z.
8. Go to step 2.
9. If x < z then go to step 7.
10. Display x.
11. Go to step 2.
12. Display y.
13. Go to step 2.
14. Display count.

Note the spaghetti logic!

/* Algorithm to read and count several triples of distinct numbers
and print the largest number in each triple. */

1. Initialize count to 0.
2. Read the first triple of numbers x, y, z.
3. While x is not the end-of-data-flag do the following:

a. Increment count by 1.
b. If x > y and x > z then

Display x.
 Else if y > x and y > z then

Display y.
 Else

Display z.
c. Read the next triple x, y, z.

4. Display count.

 Chap. 1 Software Development -3-

C. Coding (§1.3): Implementing the design plan in some programming language.

 Integration: Combining program units into a complete
software system.

— What language?
— Programs must be correct, readable, and understandable

 (therefore, must be well-structured, documented,
written in good style — read guidelines on pp. 15-18)

Why? see page 15

D. Testing, Execution, and Debugging

Validation: checking that the documents, program modules, etc. produced
match the customer's requirements.

Verification: checking that products are correct, complete, consistent with each
other and with those of the preceding phases.

Validation: "Are we building the right product?"
Verification: "Are we building the product right?"

1. Errors may occur in any of the phases:
— Specifications don't accurately reflect given information or the user's

needs/requests
— Logic errors in algorithms
— Incorrect coding or integration

2. Different kinds of tests required to detect them:
Unit tests: Each individual program unit works?
Integration tests: Units combined correctly?
System tests: Overall system works correctly?

 Chap. 1 Software Development -4-

The "V" Life Cycle Model.

Unit testing:
— probably the most rigourous and time-consuming
— surely the most fundamental and important

3. Kinds of errors
— syntax
— linking
— run-time
— logical

4. Kinds of tests:
— Black box or functional test : Outputs produced for various inputs are

checked for correctness without considering the structure of the module
itself. (Program unit is viewed as a black box that accepts inputs and
produces outputs, but the inner workings of the box are not visible.)

—White box or structural test: Performance is tested by examining its
internal structure. Test data is carefully selected so that the various parts of
the program unit are exercised.

 Chap. 1 Software Development -5-

5. Example: Binary search (pp. 19-23)

 /* INCORRECT FUNCTION -----------------------------------
 BinarySearch() performs a binary search of a for item.

 Receive: item and an array a having n items, arranged
 in ascending order
 Pass back: found and mid, where found is true and
 mid is the position of item if the search
 is successful; otherwise found is false.
---*/

void BinarySearch(NumberArray a, int n, ElementType item,
 bool & found, int & mid)
{
 int first = 0, // first and last positions in sublist
 last = n - 1; // currently being searched *)
 found = false;
 while (first <= last && !found)
 {
 mid = (first + last) / 2;
 if item < a[mid]
 last = mid;
 else if item > a[mid]
 first = mid;
 else
 found = true
 }
}

Black box test: Use n = 7 and array a of integers:
a[0] = 45
a[1] = 64
a[2] = 68
a[3] = 77
a[4] = 84
a[5] = 90
a[6] = 96

Test with item = 77 returns found = true, mid = 4
Test with item = 90 returns found = true, mid = 6
Test with item = 64 returns found = true, mid = 2
Test with item = 76 returns found = false

But, . . ., must consider special cases:
e.g., searching at the ends of the list: item ≤ 45, item ≥ 96

item = 45: found = true and mid = 1 as it should.
item = 96: doesn’t terminate; must “break” program.

 White-box test would also find an error:
e.g., Use item < 45 to test a path in which the first condition item < a[mid]

is always true so first alternative last = mid; is always selected.
 Use item > 96 to test a path in which the second condition item > a[mid]

 Chap. 1 Software Development -6-

is always true so second alternative first = mid; is always selected.

6. Techniques to locate error:
— Debugger (Project 1)

— Debug statements (p. 21): e.g.,
cerr << "DEBUG: At top of while loop in BinarySearch()\n"
 << "first = " << first << ", last = " << last
 << ", mid = " << mid << endl;

Output:
DEBUG: At top of while loop in BinarySearch()
first = 0, last = 6, mid = 3
DEBUG: At top of while loop in BinarySearch()
first = 3, last = 6, mid = 4
DEBUG: At top of while loop in BinarySearch()
first = 4, last = 6, mid = 5
DEBUG: At top of while loop in BinarySearch()
first = 5, last = 6, mid = 5
DEBUG: At top of while loop in BinarySearch()
first = 5, last = 6, mid = 5
DEBUG: At top of while loop in BinarySearch()
first = 5, last = 6, mid = 5

...

— Trace tables (p. 22 & Lab 1A)

— Quick-and-dirty patches are bad! (p. 23)

E. Maintenance — pp. 23-24

— Large % of computer center budgets
— Large % of programmer's time

Why? Poor structure, poor documentation, poor style.

