Beauty and Computer Programming

Victor T. Norman
Calvin College
August, 2011

Abstract

This article asks two big questions: First, could one consider the act of computer programming to
be a form of artistry, and thus regard the programmer as an artist? Second, can a computer
program truly be beautiful, in a similar way that a painting, musical work, or sculpture is
beautiful?

We argue that the creation of a computer program and the creation of a piece of fine art share so
many characteristics that one can rightfully consider programming to be a form of artistry. We
then argue that, just as there is ugly code, there is also beautiful code. We identify some qualities
of code that one should pursue in order to create beautiful code.

Introduction

All computer science educators have seen “ugly code” submitted by students for programming
assignments. We know what ugly code looks like: it is poorly indented, poorly documented, not
robust, uses inappropriate data structures, uses poor identifier names, etc.

But, what difference does it make that the code is ugly? If the code works correctly, who should
care that it is “ugly”?

While aesthetics has been widely discussed and investigated in the area of user interfaces (Isaacs
and Walendowski 2001) little has been written about the definition of or importance of beauty in
computer code. Computer science educators have talked about “rediscovering the passion,
beauty, joy, and awe” in programming (McGettrick et al. 2008), but little has been written about
what beauty really means in computer code.

This paper investigates the question of whether computer code can actually be beautiful, similar
to the beauty found in a painting or a sculpture. Is the purpose of writing computer code simply to
produce something that works? Or should we be concerned about the code's internal beauty? Are
the "innards" of a program not important? We first investigate a similar question: if a programmer
can create “beautiful code”, then is the programmer correctly considered an artist and could the
program itself be considered art?

The Artistry of Programming

In 1968 Donald Knuth published the first of a seven volume series of books on computer science,
and surprisingly titled it The Art of Computer Programming (Knuth 1968). Knuth writes in the
preface,

The process of preparing programs for a digital computer is especially
attractive, not only because it can be economically and scientifically
rewarding, but also because it can be an aesthetic experience much
like composing poetry or music.

However, Knuth does not go on to expound on this idea -- that is the end of the discussion in the
book. The rest of the book is a masterful and comprehensive catalogue of algorithms.

(Similarly, in the book Beautiful Code (Oram and Wilson 2007), chapter two contains a section
called “But Is It Art?” that does not address that question at all.)

Knuth’s statement above seems to imply that the process of creating a computer program is an art
(perhaps better referred to as artistry), but he does not explicitly state that the product - the
program itself - is a work of art. However, six years later, Knuth gave a speech called Computer
Programming as an Art, in which he explains his choice of the word art.

When I speak about computer programming as an art, [am thinking
primarily of it as an art form, in an aesthetic sense. The chief goal of
my work as educator and author is to help people learn how to write
beautiful programs. [...] My feeling is that when we prepare a program,
it can be like composing poetry or music; as Andrei Ershov has said,
programming can give us both intellectual and emotional satisfaction,
because it is a real achievement to master complexity and to establish
a system of consistent rules. (Knuth 1974)

Knuth makes two important statements: first, he is stating that there is not only artistry in
creating a computer program, but also that the product is art. One can be an artist because one
has many choices to make while programming (at least when working on a non-trivial program)
and thus one can employ creativity and imagination. Creating a program is not just assembling
parts in the correct order, with no room for creativity.

Second, Knuth is tying the artistry of computer programming to beauty. He states that his chief
goal is to teach students to use their artistry to create beauty in their computer code.

How similar is the creation of fine art (paintings, sculptures, music, etc.) to the creation of a
program? The next section explores this question.

Similarities between the Creation of Fine Art and a Computer Program

Art exists in order to communicate -- ideas, emotions, memories, etc. Similarly, programming is
communication. A programmer is, of course, communicating with the computer, instructing the
computer what operations to execute to solve a problem. However, a programmer is also

communicating with the people (including the programmer himself) who may need to execute,
alter, and maintain the program in the future. Donald Knuth talks about this idea in his book
titled Literate Programming:

Let us change our traditional attitude to the construction of programs:
Instead of imagining that our main task is to instruct a computer what
to do, let us concentrate rather on explaining to human beings what
we want a computer to do. (Knuth 1992)

Second, the process of creating a piece of fine art or a computer program forces the creator to
understand what he or she is trying to communicate more fully. In both cases, the process of
creating -- the reifying of the artwork or computer program -- often causes the artist/programmer
to see the problem or goal differently, i.e., to understand differently or more fully what needs to be
communicated. Programmers often create an initial prototype of a program, and show it to a
customer, or work with it themselves. This is useful because often a programmer does not fully
understand the problem to be solved until implementing the code to solve it. Only then does the
programmer understand, and only then can the programmer implement the code correctly and
efficiently, and perhaps, beautifully. Note that a more experienced artisan (be he a visual artist or
a computer programmer) may be able to skip implementing a prototype, or making initial
sketches, and may move straight from understanding the problem (or what needs to be
communicated) to implementing a solution. (Luttikhuizen 2010)

Third, the classical artist and the computer programmer both have various tools they can use to
communicate their ideas, and the person's experience and abilities with his tools have a major
impact on the person's ability to efficiently and effectively communicate his ideas. The painter has
the canvas, color, paint brush, knives, etc., whereas the programmer has the choice of language,
editor, debugger, static code analyzer, documentation generator, reference materials, etc. A novice
artisan wields his tools clumsily, creating a product slowly, inefficiently, and perhaps ineffectively.
A mature artisan wields his tools with dexterity, using the best tools at the best times to produce
the best result quickly and effectively. It is for this reason that an instructor needs to teach her
students not only the syntax of a programming language, or what a good painting looks like, but
also how to use the available tools most effectively while programming or painting. (Wolterstorff
1980)

Fourth, experienced students of an art form are best able to appreciate the art. This holds true for
both traditional art and for computer programs, although, perhaps to a different degree. It takes a
trained eye to fully appreciate what is being communicated in the media. For computer programs,
a person who has never seen code before will perhaps be unable to see any beauty at all in a
program. However, for a person who has studied thousands of programs and hundreds of
thousands of lines of code, that person may find beauty in the organization, order, naming,
documentation, and efficiency in code.

Finally, both artists and computer programmers report getting “in the zone”, to put it colloquially:

Many artists have spoken of seeing things differently while drawing
and have often mentioned that drawing puts them into a somewhat
altered state of awareness. In that different subjective state, artists
speak of feeling transported, ‘at one with the work’, able to grasp
relationships that they ordinarily cannot grasp. Awareness of the
passage of time fades away, and words recede from consciousness.
Artists say that they feel alert and aware, yet are relaxed and free

from anxiety, experiencing a pleasurable, almost mystical activation of
the mind. (Edwards 1989)

Beautiful Programs

So, there exist many similarities between the creation of fine art and the creation of a computer
program. But the question still remains: What is a beautiful program? What does it really look
like? Knuth offered these criteria, which have certainly stood the test of time (Knuth 1974):

e Utility: the "usefulness" of the program, to yourself, and especially to others.

* Correctness: a beautiful program must produce correct results, not in just the usual cases,
but in the unusual or corner cases. One could easily argue that this criterion trumps all the
others, for no one wants to use a program that is untrustworthy.

* Robustness: a beautiful program should be easy to modify and maintain, and extend to
solve similar problems, take different input, or produce its output differently.

* Readability/understandability: a beautiful program must be readable to you and others,
and not only the comments in the code, but also the code itself. Readability is enhanced by
proper and consistent naming conventions, so that identifiers in the program (variable
names, function names, class names, etc.) describe what they do or are used for. The
judicious use of comments also makes the program more readable and thus more
maintainable. Adam Kolawa in Beautiful Code states: “The problem with the new code
being written today - especially in the C++ language - is that developers use so much
inheritance and overloading that it's almost impossible to tell what the code is really doing,
why it’s doing it, and whether it’s correct.” (Oram and Wilson 2007)

¢ (larity of interface: if the program interacts directly with a human user, the program's user
interface must be beautiful -- not only in its use of colors, shapes, and fonts -- but in its ease
of use. Similarly, for a program that interacts only with other programs, the inputs and
outputs of the program should be well defined, easy to understand, and integrate with.

* Efficiency: a beautiful program should use memory and computer processing power
efficiently, using the most appropriate data structures and algorithms to solve the problem,
while still remaining robust.

Others have created their own criteria. In the book Beautiful Code (Oram and Wilson 2007),
various authors submit these criteria:

* Elegant design: this includes not only the proper use of language elements (lists, arrays,
hash tables, etc., which may be built into the language), but also the best use of design
patterns for decoupling dependencies between components, for example.

* Conciseness/simplicity: code should omit needless words, be brief, and be as simple as
possible. Yukihiro Matsumoto says, “We often feel beauty in simple code. If a program is
hard to understand, it cannot be considered beautiful.”

* Standards-based/familiarity: use of existing standards should be followed, to improve
familiarity and consistency. “Never be too innovative.”

* Modularity/loose-coupling: modules in the code should be self-contained, and as loosely
coupled as possible.

* Scalability: when appropriate, code should efficiently scale to handle large data sets or
heavy use.

* Balance: an appropriate balance of all these criteria.

These criteria for a beautiful program still allow for a great deal of freedom: no single naming
scheme is defined, no single indentation scheme is required, no commenting rules are prescribed,
etc. The important point is that the programmer must be thorough, intentional, and consistent,
keeping in mind the future readers and users of the code.

Beautiful Code is Hospitable Code

Thoroughness and consistency in code give the reader of the code a sense of being welcomed, a
sense of warmth, and a confidence that this code has been created with care. In short, the code is
hospitable. When a guest arrives at a hospitable home, the guest sees that it is clean, properly lit,
comfortable, and warm. Similarly, hospitable code welcomes the reader to come in and be
comfortable, to enjoy the cleanliness of the code, to feel at home, and to see that the space has
been carefully prepared for guests.

An Open Question

We have argued that the creation of a computer program can be an artistic activity. We have also
argued that beauty can be found in a computer program (a beauty perhaps only appreciable by
skilled artisans of programming). We have, however, not addressed an important fundamental
question:

Can a computer program itself be considered a piece of art?

This is an open question to be explored elsewhere.

Conclusion

Computer programming shares many characteristics with that of the creation of traditional fine
art, even though it is usually more closely associated with a science. One can create beautiful
computer programs, just as one can create beautiful works of art. The similarities between the
creation of traditional art (paintings, sculptures, music) and creation of computer code are

numerous. Beautiful code is consistent and thorough in its use of naming, comments, data
structures, definitions of interfaces, and design. It is concise, efficient, scalable, and
understandable, always keeping in mind the most importance consumer: programmers coming
later who need to maintain the code.

References

[1] Edwards, Betty. 1989. Drawing on the Right Side of the Brain. Revised. Tarcher.

[2] Henry Luttikhuizen. 2010. Interview with Henry Luttikhuizen, Professor of Art at Calvin
College. January 21.

[3] Isaacs, Ellen, and Alan Walendowski. 2001. Designing from Both Sides of the Screen: How
Designers and Engineers Can Collaborate to Build Cooperative Technology. Sams.

[4] Knuth, Donald E. 1968. Art of Computer Programming, Volume 1: Fundamental Algorithms. 3rd
ed. Vol. 1. Addison-Wesley Professional.

[5] ———. 1974. “Computer Programming as an Art.” Communications of the ACM: 667-673.

[6] ———. 1992. Literate Programming. 1st ed. Center for the Study of Language and Inf.

[7] McGettrick, Andrew, Eric Roberts, Daniel D. Garcia, and Chris Stevenson. 2008. Rediscovering
the passion, beauty, joy and awe: making computing fun again. In Proceedings of the 39th
SIGCSE technical symposium on Computer science education, 217-218. SIGCSE ’'08. New
York, NY, USA: ACM. doi:10.1145/1352135.1352213.
http://doi.acm.org/10.1145/1352135.1352213.

[8] Oram, Andy, and Greg Wilson. 2007. Beautiful Code: Leading Programmers Explain How They
Think (Theory in Practice). 1st ed. O’Reilly Media.

[9] Wolterstorff, Nicholas. 1980. Art in Action: Toward a Christian Aesthetic. Wm. B. Eerdmans
Publishing Company.

