Integers
i <- 1 + 1
i
## [1] 2
Doubles
3.14
## [1] 3.14
pi
## [1] 3.141593
Character Strings
s <- "Hello, world!"
s
## [1] "Hello, world!"
Logical
b <- TRUE
b
## [1] TRUE
Vectors
v <- c("one", "two")
v
## [1] "one" "two"
Dates (Using lubridate)
library(lubridate)
birthdate <- ymd(20000207)
year(birthdate)
## [1] 2000
wday(birthdate, label = TRUE)
## [1] Mon
## Levels: Sun < Mon < Tue < Wed < Thu < Fri < Sat
Factors
data <- c("East", "West", "East", "North", "North", "East", "West", "South", "West", "East", "North")
data_factor <- factor(data)
typeof(data_factor)
## [1] "integer"
Dataframes & Tibbles
library(gapminder)
gapminder
## # A tibble: 1,704 × 6
## country continent year lifeExp pop gdpPercap
## <fct> <fct> <int> <dbl> <int> <dbl>
## 1 Afghanistan Asia 1952 28.8 8425333 779.
## 2 Afghanistan Asia 1957 30.3 9240934 821.
## 3 Afghanistan Asia 1962 32.0 10267083 853.
## 4 Afghanistan Asia 1967 34.0 11537966 836.
## 5 Afghanistan Asia 1972 36.1 13079460 740.
## 6 Afghanistan Asia 1977 38.4 14880372 786.
## 7 Afghanistan Asia 1982 39.9 12881816 978.
## 8 Afghanistan Asia 1987 40.8 13867957 852.
## 9 Afghanistan Asia 1992 41.7 16317921 649.
## 10 Afghanistan Asia 1997 41.8 22227415 635.
## # … with 1,694 more rows
typeof(gapminder$continent)
## [1] "integer"
class(gapminder$continent)
## [1] "factor"