This document explores the claim that universities are increasingly
hiring more part-time faculty and less full-time faculty. It starts with
a rather poorly designed plot, which shows the trend but only at the
cost of some considerable effort on the part of the reader, and improves
the visualization, which shows the trend more clearly.
Analysing the Original Visualization
The American Association of University Professors (AAUP), a nonprofit
membership association of faculty and other academic professionals,
created this
report. The report discusses trends in instructional staff employees
between 1975 and 2011, and contains a visualization very similar to this
one:
🚧 Analyze this plot: what type of plot is it? What variables are
mapped to what aesthetics? What is easy to see, what is hard to see?
Designing Alternate Visualizations
🚧 Sketch on paper two alternative designs for this plot that might
do a better job of illustrating the hiring levels different types of
faculty over time. Describe the alternatives in the same way as you just
did above (type, aesthetic mappings) and explain how they might be
improvements of the original.
Rebuilding the Visualization
We now update the visualization incrementally, starting with an
approximation of the original.
1. Reproduce the original plot.
🚧 Remake the original plot, starting with this
dataset and trying to make it look as follows.
Notes:
- The dataset will need to be pivoted, so that you have columns for
faculty_type, year, and
percentage.
- Use a column chart with dodged bars
(
geom_col(position = "dodge")).
- Use the Viridis color scale
(
scale_fill_viridis_d())
- Include labels (
labs()) for: x,
y, fill, title,
caption
2. Convert to a stacked bar plot.
We’d like to more directly compare the hiring levels of the different
faculty types.
🚧 Update the plot to look like this.
Notes:
- See if you can do this without repeating the
pivot_longer.
- We used
theme_minimal().
3. Convert to a line plot.
Line plots tend to be good for view values over time.
🚧 Update the plot to look like this.
Notes:
- Note the use of a redundant encoding (
shape). I had to
add a geom_point layer to draw those.
- Note that, at first, the lines don’t actually show up. You can hack
you way to make it work by adding
group = year to the
aesthetic mappings; a Google search on the error message you get will
probably get you there. But that yields the plot shown above. If you
look carefully, you’ll see something badly wrong with it.
- Once you notice what’s wrong with the line plot, then fix things by
making sure that the year is treated
as.numeric. (And once
you do that, you don’t need the group = year hack anymore
anyway.)
- If you made changes to earlier code, make sure your earlier plots
still work. (You may need to replace
year with
factor(year) in those plots, depending on how you did
it.)
4. Just show the numbers.
Sometimes, simply displaying numbers is as effective as visualizing
them. Let’s make the table below, which shows the changes in
hiring levels, i.e., the 2011 percentage minus the 1975 percentage.
🚧
- First, make the table the easy way, starting with
staff. Tip: 2011 isn’t normally a valid
variable name, but you can use backticks (next to the 1 key):
`2011`. You’ll probably need to select some
columns.
- Once you have the resulting table, can you now make the same thing
but starting with your long-format data?
- Yes, you’ll need to pivot.
- Can you do write this pipeline without using
select()?
Hint: I think that select and filter should
have been called select_columns and
select_rows.
|
Full-Time Tenured Faculty
|
29.0
|
16.7
|
-12.3
|
|
Full-Time Tenure-Track Faculty
|
16.1
|
7.4
|
-8.7
|
|
Full-Time Non-Tenure-Track Faculty
|
10.3
|
15.4
|
5.1
|
|
Part-Time Faculty
|
24.0
|
41.3
|
17.3
|
|
Graduate Student Employees
|
20.5
|
19.3
|
-1.2
|
Notes:
- You can format the table by piping the resulting dataframe through
knitr::kable().
Drawing Conclusions
🚧 In conclusion, are universities hiring more part-time faculty and
less full-time faculty? Why might this be?
LS0tCnRpdGxlOiAiTGFiIDcuMSAtIEZhY3VsdHkgSGlyaW5nIFBhdHRlcm5zIgphdXRob3I6ICJBdXRob3IgR29lcyBIZXJlIgpkYXRlOiAiU2VtZXN0ZXIgR29lcyBIZXJlIgpvdXRwdXQ6CiAgaHRtbF9kb2N1bWVudDoKICAgIGNvZGVfZG93bmxvYWQ6IHRydWUKLS0tCgpgYGB7ciBzZXR1cCwgaW5jbHVkZSA9IEZBTFNFfQojIFNldCBzb21lIHVzZWZ1bCBjaHVuayBvcHRpb25zIGZvciBjb2RlIGNodW5rcy4Ka25pdHI6Om9wdHNfY2h1bmskc2V0KAogIGVjaG8gPSBUUlVFLAogIGVycm9yID0gVFJVRSwgICAgIyBkaXNwbGF5IGVycm9ycyBidXQga2VlcCBnb2luZy4KICBjb21tZW50ID0gIiIsICAgICMgZG9uJ3QgYWRkICcjIycgY2hhcmFjdGVycyBiZWZvcmUgb3V0cHV0LgogIG1lc3NhZ2UgPSBGQUxTRSAgIyBkb24ndCBpbmNsdWRlIG1lc3NhZ2VzIGluIHRoZSBrbml0dGVkIG91dHB1dCAoY2hlY2sgdGhlbSBpbiBSU3R1ZGlvKQogICkKbGlicmFyeSh0aWR5dmVyc2UpCnRoZW1lX3NldCh0aGVtZV9idygpKQpgYGAKClRoaXMgZG9jdW1lbnQgZXhwbG9yZXMgdGhlIGNsYWltIHRoYXQgdW5pdmVyc2l0aWVzIGFyZSBpbmNyZWFzaW5nbHkgaGlyaW5nIG1vcmUgcGFydC10aW1lIGZhY3VsdHkgYW5kIGxlc3MgZnVsbC10aW1lIGZhY3VsdHkuIEl0IHN0YXJ0cyB3aXRoIGEgcmF0aGVyIHBvb3JseSBkZXNpZ25lZCBwbG90LCB3aGljaCBzaG93cyB0aGUgdHJlbmQgYnV0IG9ubHkgYXQgdGhlIGNvc3Qgb2Ygc29tZSBjb25zaWRlcmFibGUgZWZmb3J0IG9uIHRoZSBwYXJ0IG9mIHRoZSByZWFkZXIsIGFuZCBpbXByb3ZlcyB0aGUgdmlzdWFsaXphdGlvbiwgd2hpY2ggc2hvd3MgdGhlIHRyZW5kIG1vcmUgY2xlYXJseS4KCiMjIEFuYWx5c2luZyB0aGUgT3JpZ2luYWwgVmlzdWFsaXphdGlvbgoKVGhlIEFtZXJpY2FuIEFzc29jaWF0aW9uIG9mIFVuaXZlcnNpdHkgUHJvZmVzc29ycyAoQUFVUCksIGEgbm9ucHJvZml0IG1lbWJlcnNoaXAgYXNzb2NpYXRpb24gb2YgZmFjdWx0eSBhbmQgb3RoZXIgYWNhZGVtaWMgcHJvZmVzc2lvbmFscywgY3JlYXRlZCBbdGhpcyByZXBvcnRdKGh0dHBzOi8vd3d3LmFhdXAub3JnL3NpdGVzL2RlZmF1bHQvZmlsZXMvZmlsZXMvQUFVUF9SZXBvcnRfSW5zdHJTdGFmZi03NS0xMV9hcHIyMDEzLnBkZikuIFRoZSByZXBvcnQgZGlzY3Vzc2VzIHRyZW5kcyBpbiBpbnN0cnVjdGlvbmFsIHN0YWZmIGVtcGxveWVlcyBiZXR3ZWVuIDE5NzUgYW5kIDIwMTEsIGFuZCBjb250YWlucyBhIHZpc3VhbGl6YXRpb24gdmVyeSBzaW1pbGFyIHRvIHRoaXMgb25lOgoKIVtJbnN0cnVjdGlvbmFsIHN0YWZmIGVtcGxveW1lbnQgdHJlbmRzXShodHRwczovL2NzLmNhbHZpbi5lZHUvY291cnNlcy9pbmZvLzYwMS8wN3RpZHkvbGFiL2ltYWdlcy9zdGFmZi1lbXBsb3ltZW50LnBuZyl7d2lkdGg9IjcwMHB4In0KCvCfmqcKQW5hbHl6ZSB0aGlzIHBsb3Q6IHdoYXQgdHlwZSBvZiBwbG90IGlzIGl0PyBXaGF0IHZhcmlhYmxlcyBhcmUgbWFwcGVkIHRvIHdoYXQgYWVzdGhldGljcz8gV2hhdCBpcyBlYXN5IHRvIHNlZSwgd2hhdCBpcyBoYXJkIHRvIHNlZT8KCiMjIERlc2lnbmluZyBBbHRlcm5hdGUgVmlzdWFsaXphdGlvbnMKCvCfmqcKU2tldGNoIG9uIHBhcGVyIHR3byBhbHRlcm5hdGl2ZSBkZXNpZ25zIGZvciB0aGlzIHBsb3QgdGhhdCBtaWdodCBkbyBhIGJldHRlciBqb2Igb2YgaWxsdXN0cmF0aW5nIHRoZSBoaXJpbmcgbGV2ZWxzIGRpZmZlcmVudCB0eXBlcyBvZiBmYWN1bHR5IG92ZXIgdGltZS4gRGVzY3JpYmUgdGhlIGFsdGVybmF0aXZlcyBpbiB0aGUgc2FtZSB3YXkgYXMgeW91IGp1c3QgZGlkIGFib3ZlICh0eXBlLCBhZXN0aGV0aWMgbWFwcGluZ3MpIGFuZCBleHBsYWluIGhvdyB0aGV5IG1pZ2h0IGJlIGltcHJvdmVtZW50cyBvZiB0aGUgb3JpZ2luYWwuCgojIyBSZWJ1aWxkaW5nIHRoZSBWaXN1YWxpemF0aW9uCgpXZSBub3cgdXBkYXRlIHRoZSB2aXN1YWxpemF0aW9uIGluY3JlbWVudGFsbHksIHN0YXJ0aW5nIHdpdGggYW4gYXBwcm94aW1hdGlvbiBvZiB0aGUgb3JpZ2luYWwuCgojIyMgMS4gUmVwcm9kdWNlIHRoZSBvcmlnaW5hbCBwbG90LgoK8J+apwpSZW1ha2UgdGhlIG9yaWdpbmFsIHBsb3QsIHN0YXJ0aW5nIHdpdGggW3RoaXMgZGF0YXNldF0oaHR0cHM6Ly9jcy5jYWx2aW4uZWR1L2NvdXJzZXMvaW5mby82MDEvMDd0aWR5L2xhYi9kYXRhL2luc3RydWN0aW9uYWwtc3RhZmYuY3N2KSBhbmQgdHJ5aW5nIHRvIG1ha2UgaXQgbG9vayBhcyBmb2xsb3dzLgoKIVthYXVwLTFdKGh0dHBzOi8vY3MuY2FsdmluLmVkdS9jb3Vyc2VzL2luZm8vNjAxLzA3dGlkeS9sYWIvaW1hZ2VzL2FhdXAtMS5wbmcpCgpOb3RlczoKCi0gVGhlIGRhdGFzZXQgd2lsbCBuZWVkIHRvIGJlIHBpdm90ZWQsIHNvIHRoYXQgeW91IGhhdmUgY29sdW1ucyBmb3IgYGZhY3VsdHlfdHlwZWAsIGB5ZWFyYCwgYW5kIGBwZXJjZW50YWdlYC4KLSBVc2UgYSBjb2x1bW4gY2hhcnQgd2l0aCBkb2RnZWQgYmFycyAoYGdlb21fY29sKHBvc2l0aW9uID0gImRvZGdlIilgKS4KLSBVc2UgdGhlIFZpcmlkaXMgY29sb3Igc2NhbGUgKGBzY2FsZV9maWxsX3ZpcmlkaXNfZCgpYCkKLSBJbmNsdWRlIGxhYmVscyAoYGxhYnMoKWApIGZvcjogYHhgLCBgeWAsIGBmaWxsYCwgYHRpdGxlYCwgYGNhcHRpb25gCgojIyMgMi4gQ29udmVydCB0byBhIHN0YWNrZWQgYmFyIHBsb3QuCgpXZSdkIGxpa2UgdG8gbW9yZSBkaXJlY3RseSBjb21wYXJlIHRoZSBoaXJpbmcgbGV2ZWxzIG9mIHRoZSBkaWZmZXJlbnQgZmFjdWx0eSB0eXBlcy4KCvCfmqcKVXBkYXRlIHRoZSBwbG90IHRvIGxvb2sgbGlrZSB0aGlzLgoKIVthYXVwLTJdKGh0dHBzOi8vY3MuY2FsdmluLmVkdS9jb3Vyc2VzL2luZm8vNjAxLzA3dGlkeS9sYWIvaW1hZ2VzL2FhdXAtMi5wbmcpCgpOb3RlczoKCi0gU2VlIGlmIHlvdSBjYW4gZG8gdGhpcyB3aXRob3V0IHJlcGVhdGluZyB0aGUgYHBpdm90X2xvbmdlcmAuCi0gV2UgdXNlZCBgdGhlbWVfbWluaW1hbCgpYC4KCiMjIyAzLiBDb252ZXJ0IHRvIGEgbGluZSBwbG90LgoKTGluZSBwbG90cyB0ZW5kIHRvIGJlIGdvb2QgZm9yIHZpZXcgdmFsdWVzIG92ZXIgdGltZS4KCvCfmqcKVXBkYXRlIHRoZSBwbG90IHRvIGxvb2sgbGlrZSB0aGlzLgoKIVthYXVwLTNdKGh0dHBzOi8vY3MuY2FsdmluLmVkdS9jb3Vyc2VzL2luZm8vNjAxLzA3dGlkeS9sYWIvaW1hZ2VzL2FhdXAtMy5wbmcpCgpOb3RlczoKCgotIE5vdGUgdGhlIHVzZSBvZiBhIHJlZHVuZGFudCBlbmNvZGluZyAoYHNoYXBlYCkuIEkgaGFkIHRvIGFkZCBhIGBnZW9tX3BvaW50YCBsYXllciB0byBkcmF3IHRob3NlLgotIE5vdGUgdGhhdCwgYXQgZmlyc3QsIHRoZSBsaW5lcyBkb24ndCBhY3R1YWxseSBzaG93IHVwLiBZb3UgY2FuIGhhY2sgeW91IHdheSB0byBtYWtlIGl0IHdvcmsgYnkgYWRkaW5nIGBncm91cCA9IHllYXJgIHRvIHRoZSBhZXN0aGV0aWMgbWFwcGluZ3M7IGEgR29vZ2xlIHNlYXJjaCBvbiB0aGUgZXJyb3IgbWVzc2FnZSB5b3UgZ2V0IHdpbGwgcHJvYmFibHkgZ2V0IHlvdSB0aGVyZS4gQnV0IHRoYXQgeWllbGRzIHRoZSBwbG90IHNob3duIGFib3ZlLiBJZiB5b3UgbG9vayBjYXJlZnVsbHksIHlvdSdsbCBzZWUgc29tZXRoaW5nIGJhZGx5IHdyb25nIHdpdGggaXQuCi0gT25jZSB5b3Ugbm90aWNlIHdoYXQncyB3cm9uZyB3aXRoIHRoZSBsaW5lIHBsb3QsIHRoZW4gZml4IHRoaW5ncyBieSBtYWtpbmcgc3VyZSB0aGF0IHRoZSB5ZWFyIGlzIHRyZWF0ZWQgYGFzLm51bWVyaWNgLiAoQW5kIG9uY2UgeW91IGRvIHRoYXQsIHlvdSBkb24ndCBuZWVkIHRoZSBgZ3JvdXAgPSB5ZWFyYCBoYWNrIGFueW1vcmUgYW55d2F5LikKLSBJZiB5b3UgbWFkZSBjaGFuZ2VzIHRvIGVhcmxpZXIgY29kZSwgbWFrZSBzdXJlIHlvdXIgZWFybGllciBwbG90cyBzdGlsbCB3b3JrLiAoWW91IG1heSBuZWVkIHRvIHJlcGxhY2UgYHllYXJgIHdpdGggYGZhY3Rvcih5ZWFyKWAgaW4gdGhvc2UgcGxvdHMsIGRlcGVuZGluZyBvbiBob3cgeW91IGRpZCBpdC4pCgojIyMgNC4gSnVzdCBzaG93IHRoZSBudW1iZXJzLgoKU29tZXRpbWVzLCBzaW1wbHkgZGlzcGxheWluZyBudW1iZXJzIGlzIGFzIGVmZmVjdGl2ZSBhcyB2aXN1YWxpemluZyB0aGVtLiBMZXQncyBtYWtlIHRoZSAqdGFibGUqIGJlbG93LCB3aGljaCBzaG93cyB0aGUgY2hhbmdlcyBpbiBoaXJpbmcgbGV2ZWxzLCBpLmUuLCB0aGUgMjAxMSBwZXJjZW50YWdlIG1pbnVzIHRoZSAxOTc1IHBlcmNlbnRhZ2UuCgrwn5qnCgotIEZpcnN0LCBtYWtlIHRoZSB0YWJsZSB0aGUgZWFzeSB3YXksIHN0YXJ0aW5nIHdpdGggYHN0YWZmYC4gVGlwOiBgMjAxMWAgaXNuJ3Qgbm9ybWFsbHkgYSB2YWxpZCB2YXJpYWJsZSBuYW1lLCBidXQgeW91IGNhbiB1c2UgYmFja3RpY2tzIChuZXh0IHRvIHRoZSAxIGtleSk6IGBgIGAyMDExYCBgYC4gWW91J2xsIHByb2JhYmx5IG5lZWQgdG8gYHNlbGVjdGAgc29tZSBjb2x1bW5zLgotIE9uY2UgeW91IGhhdmUgdGhlIHJlc3VsdGluZyB0YWJsZSwgY2FuIHlvdSBub3cgbWFrZSB0aGUgc2FtZSB0aGluZyBidXQgc3RhcnRpbmcgd2l0aCB5b3VyICpsb25nKi1mb3JtYXQgZGF0YT8KICAtIFllcywgeW91J2xsIG5lZWQgdG8gcGl2b3QuCiAgLSBDYW4geW91IGRvIHdyaXRlIHRoaXMgcGlwZWxpbmUgd2l0aG91dCB1c2luZyBgc2VsZWN0KClgPyBIaW50OiBJIHRoaW5rIHRoYXQgYHNlbGVjdGAgYW5kIGBmaWx0ZXJgIHNob3VsZCBoYXZlIGJlZW4gY2FsbGVkIGBzZWxlY3RfY29sdW1uc2AgYW5kIGBzZWxlY3Rfcm93c2AuCgo8dGFibGU+Cjx0aGVhZD4KPHRyIGNsYXNzPSJoZWFkZXIiPgo8dGggYWxpZ249ImxlZnQiPmZhY3VsdHlfdHlwZTwvdGg+Cjx0aCBhbGlnbj0icmlnaHQiPjE5NzU8L3RoPgo8dGggYWxpZ249InJpZ2h0Ij4yMDExPC90aD4KPHRoIGFsaWduPSJyaWdodCI+Y2hhbmdlPC90aD4KPC90cj4KPC90aGVhZD4KPHRib2R5Pgo8dHIgY2xhc3M9Im9kZCI+Cjx0ZCBhbGlnbj0ibGVmdCI+RnVsbC1UaW1lIFRlbnVyZWQgRmFjdWx0eTwvdGQ+Cjx0ZCBhbGlnbj0icmlnaHQiPjI5LjA8L3RkPgo8dGQgYWxpZ249InJpZ2h0Ij4xNi43PC90ZD4KPHRkIGFsaWduPSJyaWdodCI+LTEyLjM8L3RkPgo8L3RyPgo8dHIgY2xhc3M9ImV2ZW4iPgo8dGQgYWxpZ249ImxlZnQiPkZ1bGwtVGltZSBUZW51cmUtVHJhY2sgRmFjdWx0eTwvdGQ+Cjx0ZCBhbGlnbj0icmlnaHQiPjE2LjE8L3RkPgo8dGQgYWxpZ249InJpZ2h0Ij43LjQ8L3RkPgo8dGQgYWxpZ249InJpZ2h0Ij4tOC43PC90ZD4KPC90cj4KPHRyIGNsYXNzPSJvZGQiPgo8dGQgYWxpZ249ImxlZnQiPkZ1bGwtVGltZSBOb24tVGVudXJlLVRyYWNrIEZhY3VsdHk8L3RkPgo8dGQgYWxpZ249InJpZ2h0Ij4xMC4zPC90ZD4KPHRkIGFsaWduPSJyaWdodCI+MTUuNDwvdGQ+Cjx0ZCBhbGlnbj0icmlnaHQiPjUuMTwvdGQ+CjwvdHI+Cjx0ciBjbGFzcz0iZXZlbiI+Cjx0ZCBhbGlnbj0ibGVmdCI+UGFydC1UaW1lIEZhY3VsdHk8L3RkPgo8dGQgYWxpZ249InJpZ2h0Ij4yNC4wPC90ZD4KPHRkIGFsaWduPSJyaWdodCI+NDEuMzwvdGQ+Cjx0ZCBhbGlnbj0icmlnaHQiPjE3LjM8L3RkPgo8L3RyPgo8dHIgY2xhc3M9Im9kZCI+Cjx0ZCBhbGlnbj0ibGVmdCI+R3JhZHVhdGUgU3R1ZGVudCBFbXBsb3llZXM8L3RkPgo8dGQgYWxpZ249InJpZ2h0Ij4yMC41PC90ZD4KPHRkIGFsaWduPSJyaWdodCI+MTkuMzwvdGQ+Cjx0ZCBhbGlnbj0icmlnaHQiPi0xLjI8L3RkPgo8L3RyPgo8L3Rib2R5Pgo8L3RhYmxlPgoKTm90ZXM6CgotIFlvdSBjYW4gZm9ybWF0IHRoZSB0YWJsZSBieSBwaXBpbmcgdGhlIHJlc3VsdGluZyBkYXRhZnJhbWUgdGhyb3VnaCBga25pdHI6OmthYmxlKClgLgoKIyMgRHJhd2luZyBDb25jbHVzaW9ucwoK8J+apwpJbiBjb25jbHVzaW9uLCBhcmUgdW5pdmVyc2l0aWVzIGhpcmluZyBtb3JlIHBhcnQtdGltZSBmYWN1bHR5IGFuZCBsZXNzIGZ1bGwtdGltZSBmYWN1bHR5PyBXaHkgbWlnaHQgdGhpcyBiZT8K