Ca	alvin AI/ML Handout Feb 24, 2025	Name:
1.	Fill in the blanks below with "an input feature", "a parameter value", "layer outputs", "loss value": A gradient is the slope of the tangent line on a plot where the x axis is and the y axis is and the y axis is Sketch an example of both of these plots.	
_	•	
2.	Let's use an MLP with one hidden layer to classify handwritten digits as 0, 1,, 9. We'll give the model a 28x28 pixel image of a digit, flattened into a 784-dimensional vector. Fill in the blanks below with reasonable values.	
	<pre>W1 = random_array(size=()</pre>	
	b1 = random_array(size=()	
	W2 = random_array(size=())
	b2 = random_array(size=())
	<pre>for x_batch, y_batch in training_data:</pre>	# Fill in the shapes below:
	# forward pass, starting with linear layer	$x_{batch.shape} = (N, 784); y_{batch.shape} = (N,$
	linear_out_1 =	linear_out_1.shape =
	activations_1 =	activations_1.shape =
	logits = probs =	logits.shape = probs.shape =
	loss = cross_entropy_loss(probs, y_batch)	loss.shape =
	# backward pass	W1.grad.shape =
	<pre>loss.backward() # grads now stored in .grad</pre>	bl.grad.shape =
	for param in [W1, b1, W2, b2]:	W2.grad.shape =
_	param +=	b2.grad.shape =
Calvin AI/ML Handout Feb 24, 2025		
C	arvin Ai/Wil Handout 160 24, 2025	Name:
1.	Fill in the blanks below with "an input feature", "a parameter value", "layer outputs", "loss value":	
	A gradient is the slope of the tangent line on a plot where the x axis is and the y axis is	
	. A weight in a linear layer is the slope of the tangent line on a plot where the x axis is	
	and the y axis is	
	Sketch an example of both of these plots.	
2	Let's use an MLP with one hidden layer to classify handwritten digits as 0, 1,, 9. We'll give the model a 28x28	
۵.	pixel image of a digit, flattened into a 784-dimensional vector. Fill in the blanks below with reasonable values.	
	<pre>W1 = random_array(size=()</pre>)
	b1 = random_array(size=())
	W2 = random_array(size=())
	b2 = random_array(size=()	J
	<pre>for x_batch, y_batch in training_data:</pre>	# Fill in the shapes below:
	# forward pass, starting with linear layer	$x_{batch.shape} = (N, 784); y_{batch.shape} = (N,$
	linear_out_1 =	linear_out_1.shape =
	activations_1 =	
	logits =	logits.shape =

loss.shape = _____

W1.grad.shape = ____

b2.grad.shape = __

b1.grad.shape =

W2.grad.shape = ____

loss = cross_entropy_loss(probs, y_batch)

loss.backward() # grads now stored in .grad

for param in [W1, b1, W2, b2]:

backward pass

param += ____

Before you leave, pick a couple of these questions to react to:

- 1. What was the most important concept from today for you?
- 2. What was the muddiest concept today?
- 3. How does what we did today connect with what you've learned before?
- 4. What would you like to review or clarify next time we meet?
- 5. What are you curious, hopeful, or excited about?

Before you leave, pick a couple of these questions to react to:

- 1. What was the most important concept from today for you?
- 2. What was the muddiest concept today?
- 3. How does what we did today connect with what you've learned before?
- 4. What would you like to review or clarify next time we meet?
- 5. What are you curious, hopeful, or excited about?