Part 1: Using Embeddings

Suppose we're using a dot product (no bias) collaborative filtering model:

Users:

User 1	2	0	-2
User 2	1	-1	-1
User 3	0	1	-1
User 4	0	-1	0
User 5	-1	1	-1

Movies:

Movie 1	0	-1	0
Movie 2	-1	-2	0
Movie 3	1	1	1

Compute the dot products to score how much each user likes each movie:

```
dot(user 2, movie 1) = ____
dot(user 1, movie 2) = ___
dot(user 4, movie 3) = ___
```

Part 2: Constructing Embeddings

Now let's construct embeddings. Fill in numerical values for the vectors below so that the following relationships hold (where u1 means User 1, etc.):

$$Dot(u1, m1) = 1.0$$
, $Dot(u1, m2) = 0.0$, $Dot(u1, m3) = 1.0$
 $Dot(u2, m1) = 0.0$, $Dot(u2, m2) = 1.0$, $Dot(u2, m3) = 1.0$

Users

User 1				
User 2				

Movies

Movie 1			
Movie 2			
Movie 3			

Part 3: Learning Embeddings

For the u1 and m1 vectors you constructed above:

- 1. Is there an element of u1 that has zero effect on dot(u1, m1)? How could you tell?
- 2. For each element of u1, what is the gradient of dot(u1, m1) with respect to that element? Now put those gradients together as a vector. Can you express that vector symbolically using u1 and m1?
- 3. Repeat the previous question for m1.