Internet Infrastructure Security (COMP444)

Assignment One

Each question carries six marks, unless stated otherwise. ** Due on 7 March 2014 **

Rocky K. C. Chang

March 13, 2014

- 1. [6 marks] (Shift cipher) Consider the Shift cipher in slide 10 of Introduction to Classical Cryptosystems (i.e., $\mathbf{M} = \mathbf{C} = \mathbf{K} = \{0, 1, 2, \dots, 25\}$). If we use $K = \{0, 1, \dots, 50\}$ instead, answer the following questions.
 - (a) [3 marks] Is the resulting cryptosystem still legitimate?
 - (b) [3 marks] Does the larger key space increase the security of the cryptosystem?
- 2. [6 marks] (A stream cipher) A stream cipher generates a key stream and encrypts a message by exclusive-ORing it with the key stream. The receiver side also generates the same key stream to decrypt the message by performing exclusive-OR.

Consider the following stream cipher. The key stream is given by k_0, k_1, k_2, \cdots . The values of k_0 is initialized by an IV, whereas other k_i s are generated by an encryption function E().

$$k_0 = IV$$

 $k_i = E(k, k_{i-1}), for i \ge 1$
 $c_i = p_i \oplus k_i$

One major problem with this cipher is that two different messages using the same IV will have the same key stream. Consider that two different plaintexts P and P' are encrypted by the same key stream and they produce ciphertexts C and C', respectively.

- (a) [4 marks] What kind of information does they leak out to an attacker?
- (b) [2 marks] If the attacker also knows P or P', what else will be know and why?
- 3. [6 marks] (A different CBC) Consider a slightly different CBC encryption in Figure 1.
 - (a) [3 marks] Based on Figure 1, write down the encryption and decryption functions using our usual notations m_i and c_i for the *i*th plaintext block and *i*th ciphertext block, respectively.
 - (b) [3 marks] If bit 3 of c_i is modified, what kind of changes will be made to the plaintext after decryption? (Hint: slide 37 of Introduction to Block Ciphers)

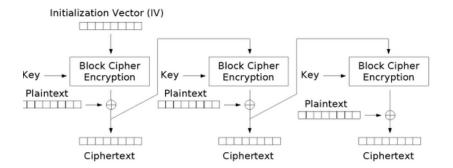


Figure 1: Encryption using a slightly different CBC.

4. [10 marks] (CBC ciphertext stealing) CBC ciphertext stealing is a method to handle a block cipher's requirement on the size of the plaintext without padding (as you have seen from the Padding Oracle attack, allowing padding could breach security).

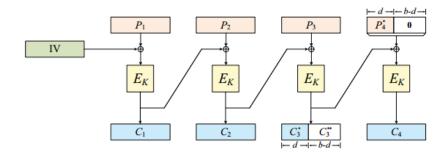


Figure 2: CBC ciphertext stealing.

Figure 2 illustrates the method. The size of the last plaintext "block" (P_4^*) is less than a block size (in b bits). In particular, P_4^* has d bits. It is padded with $\mathbf{0}$ (b-d 0s) and then goes to the last stage of encryption. Note that the third ciphertext block consists of two parts: C_3^* (in d bits) and C_3^{**} (in b-d bits). Note that the second part, which is distinguished by white color, is not sent out. The encrypting node then sends out C_1 , C_2 , C_4 , and C_3^* . Answer the following questions about this method after a decrypting node receives the ciphertext.

- (a) [6 marks] Show that the decrypting node can obtain P_4^* by taking the first d bits from $D_K(C_4) \oplus (C_3^* || \mathbf{0})$, where $D_K()$ is the corresponding decryption function.
- (b) [4 marks] The decrypting node can also obtain C_3^{**} from the second part (b-d) bits) of $D_K(C_4) \oplus (C_3^* \mid\mid \mathbf{0})$. Therefore, it obtains $C_3^* \mid\mid C_3^{**}$. Describe how it obtains P_3 from $C_3^* \mid\mid C_3^{**}$.

5. [8 marks] (Extension attack against hash functions) Consider two messages to be hashed by a cryptographic hash function h(). The size of the first message m_1 is not a multiple of the hash function's block size. The size of the second message m_2 , on the other hand, is a multiple of the hash function's block size. The hash function uses this padding method: Always pad with a bit 1 and then followed by a minimal number of bit 0 (the one considered in assignment 1).

Would the following padding attacks be successful, assuming that an attacker has already obtained m_1 and $h(m_1)$, and m_2 and $h(m_2)$? Support your answers with concrete explanation.

- (a) [2 marks] An attacker crafts a new message $m_1 \parallel m_3$, such that m_3 is arbitrarily selected to fill m_1 with just enough data for meeting the block size requirement.
- (b) [2 marks] Same as (a) (i.e., $m_1 \parallel m_3$). Additionally, he concatenates it with m_4 (i.e., $m_1 \parallel m_3 \parallel m_4$) which generally does not comprise a multiple of blocks.
- (c) [2 marks] An attacker crafts a new message $m_2 \parallel m_3$, where m_3 is arbitrarily selected, and it comprises a multiple of blocks.
- (d) [2 marks] An attacker crafts a new message $m_2 \parallel m_3$, where m_3 is arbitrarily selected, and it *does not* comprise a multiple of blocks.
- 6. [10 marks] (A hash-based password system) Consider the following password scheme for Bob to authenticate Alice. First we denote $hash^n(passwd) = hash(hash^{n-1}(passwd)), n > 1$ and $hash^1(passwd) = hash(passwd)$.

When Alice registers her password for the first time, she picks a large n randomly, and computes $hash^n(passwd)$. She then sends her identity, the hash value and n to Bob. Assume that Bob and Alice have agreed on a secure one-way hash function beforehand. Moreover, Alice does not remember n and the hash value.

When she logins again next time,

- (a) Alice (or someone else) \rightarrow Bob: "I am Alice."
- (b) Bob \rightarrow Alice: n.
- (c) Alice \rightarrow Bob: $hash^{n-1}(passwd)$.
- (d) Bob hashes $hash^{n-1}(passwd)$ once and compares it with the stored $hash^n(passwd)$ for Alice
 - i. If they match, the authentication succeeds. Bob then replaces the stored $hash^n(passwd)$ and n with $hash^{n-1}(passwd)$ and n-1, respectively.
 - ii. Otherwise, the authentication fails.

Thus, n decreases each time Alice logins successfully.

- (a) [6 marks] Consider that Eve can read the three login (unencrypted) messages between Alice and Bob. How does the preimage-resistant property of the one-way hash function prevent Eve from logging-in successfully as Alice?
- (b) [4 marks] Not only Eve can observe the login messages, she can also launch an active attack. For example, Eve can capture the 2nd message and changes n to a smaller

value, say n', and forwards the modified message to Alice. Moreover, Eve receives $hash^{n'-1}(passwd)$ from Alice. Discuss how Eve can impersonate Alice with that information.

- 7. [6 marks] (The Chinese Remainder Theorem, CRT) We re-visit an assignment problem on the CRT. Consider $p_1 = 2$, $p_2 = 3$, $p_3 = 5$, and $P = p_1 \times p_2 \times p_3 = 30$, and $x \in \{0, 1, 2, \dots, 29\}$. We would like to compute $12^{9999} \mod 30$. We know that by the CRT, $12^{9999} \mod 30$ can be represented by $(0 \mod 2, 0 \mod 3, 12^{9999} \mod 5)$.
 - (a) [4 marks] What is the value of $12^{9999} \mod 5$? (Hint: $12^4 \equiv 1 \pmod 5$).
 - (b) [2 marks] What is the value of $12^{9999} \mod 30$? (Hint: solving the CRT by setting $P_3 = 6$ and $y_3 = 1$ in the formula on slide 25 of Prelude to Public-Key Cryptography).
- 8. [6 marks] (Affine cipher) Consider Affine cipher with Z_{233} . What is the key size of the key space for this cipher (Hint: an example in slide 10 of Prelude to Public-Key Cryptography, and 233 is a prime.).