Exercises
8.5
1. 10 cubed = 1000
9 cubed = 729
8 cubed = 512
7 cubed = 343
6 cubed = 216
5 cubed = 125
4 cubed = 64
3 cubed = 27
2 cubed = 8
1 cubed = 1
2. 10 squared = 100
8 squared = 64
6 squared = 36
4 squared = 16
2 squared = 4
3.
1
1
2
2
3
3
1
4
4
2
5
5
3
1
4.
3
1
3
5
5.
3 1 3
3 1 2
3 1 1
3 2 3
3 2 2
3 3 3
2 1 2
2 1 1
2 2 2
1 1 1
6.
1 1 1
1 2 1
1 2 2
1 3 1
1 3 2
1 3 3
2 2 2
2 3 2
2 3 3
3 3 3
7.
1 1 1
1 1 2
1 2 1
1 2 2
1 2 3
1 3 1
1 3 2
1 3 3
1 3 4
2 1 1
2 1 2
2 1 3
2 2 1
2 2 2
2 2 3
2 2 4
2 3 1
2 3 2
2 3 3
2 3 4
1 1 1
1 1 2
1 1 3
1 1 4
1 2 1
1 2 2
1 2 3
1 2 4
1 3 1
1 3 2
1 3 3
1 3 4
2 1 1
2 1 2
2 1 3
2 1 4
2 2 1
2 2 2
2 2 3
2 2 4
2 3 1
2 3 2
2 3 3
2 3 4
8.
1 1 1
1 1 2
1 1 3
1 1 4
1 2 1
1 2 2
1 2 3
1 2 4
1 3 1
1 3 2
1 3 3
1 3 4
2 1 1
2 1 2
2 1 3
2 1 4
2 2 1
2 2 2
2 2 3
2 2 4
2 3 1
2 3 2
2 3 3
2 3 4
9.
1 1 1
1 1 2
1 1 3
1 1 4
1 2 1
1 2 2
1 2 3
1 2 4
1 3 1
1 3 2
1 3 3
1 3 4
2 2 1
2 2 2
2 2 3
2 2 4
2 3 1
2 3 2
2 3 3
2 3 4
10.
2 1 1
11.
1 1 1
1 1 2
1 1 3
1 1 4
1 2 1
1 2 2
1 2 3
1 2 4
1 3 1
1 3 2
1 3 3
1 3 4
2 1 1
2 1 2
2 1 3
2 1 4
2 2 1
2 2 2
2 2 3
2 2 4
2 3 1
2 3 2
2 3 3
2 3 4
12.
5 1 9
4 2 6
3 3 3
2 4 0
1 5 -3
13.
0 10 10
1 9 11
2 8 12
3 7 13
4 6 14
5 5 15
6 4 16
14.
0 10 10
1 9 11
2 8 12
3 7 13
4 6 14
5 5 15
6 4 16
7 3 17
8 2 18
9 1 19
10 0 20
11 -1 21
15.
5
1
2
3
###
3
1
###
1
***
16.
base-2 log of 32 = 5
base-2 log of 16 = 4
base-2 log of 8 = 3
base-2 log of 4 = 2
base-2 log of 2 = 1
base-2 log of 1 = 0
17.
2
3
5
9
4
6
10
6
9
*****
18.
0 1
1 -1
2 3
19.
0002448612*****
20. While loop Do-while loop Forever loop
|
|
number |
product |
|
number |
product |
|
number |
product |
|
|
0 |
1 |
|
0 |
1 |
|
0 |
1 |
|
|
1 |
1 |
|
1 |
1 |
|
1 |
1 |
|
|
2 |
2 |
|
2 |
2 |
|
2 |
2 |
|
|
3 |
6 |
|
3 |
6 |
|
3 |
6 |
|
|
4 |
24 |
|
4 |
24 |
|
4 |
24 |
|
|
|
|
|
|
|
|
5 |
24 |
21. While loop Do-while loop Forever loop
|
|
number |
product |
|
number |
product |
|
number |
product |
|
|
0 |
1 |
|
0 |
1 |
|
0 |
1 |
|
|
1 |
1 |
|
1 |
1 |
|
1 |
1 |
|
|
2 |
2 |
|
2 |
2 |
|
2 |
2 |
|
|
|
|
|
|
|
|
3 |
2 |
22. While loop Do-while loop Forever loop
|
|
number |
product |
|
number |
product |
|
number |
product |
|
|
0 |
1 |
|
0 |
1 |
|
0 |
1 |
|
|
|
|
|
1 |
1 |
|
1 |
1 |
|
|
|
|
|
|
|
|
2 |
2 |
|
|
|
|
|
|
|
|
3 |
2 |
23.
do
{
theScreen.println(x);
x
-= 0.5;
}
while (x > 0);
24.
for (int i = 1; i
<= 50 ; i++)
theScreen.println( (2*i) * (2*i)
);
25.
for (double x =
1.0; x <= 5.0; x += 0.25)
theScreen.println(
Math.sqrt(x) );
26.
int fib1 = 1,
fib2 = 1, fib3;
theScreen.println(1);
theScreen.println(1);
for (;;)
{
fib3 = fib1 + fib2;
if (fib3 >= 500) break;
theScreen.println(fib3);
fib1 = fib2;
fib2 = fib3;
}
27.
for(;;)
{
theScreen.print("Enter a
real number: ");
x = theKeyboard.readDouble();
if (x > 0) break;
theScreen.println("Sorry,
you entered: " + x
+
"\nThe number must be POSITIVE");
}
28.
public
static int summation (int first, int last)
{
int runningTotal = 0;
for (int count = first; count
<= last; count++)
runningTotal +=
count;
return runningTotal;
}
29.
public
static BigInteger summation (BigInteger n)
{
BigInteger runningTotal =
BigInteger.ZERO,
count = BigInteger.ONE;
while ( count.compareTo(n) <=
0)
{
runningTotal
= runningTotal.add(count) ;
count
= count.add( BigInteger.ONE );
}
return runningTotal;
}
30.
public
static BigInteger summation (BigInteger first,
BigInteger
last)
{
BigInteger runningTotal =
BigInteger.ZERO,
count = first;
while ( count.compareTo(last)
<= 0)
{
runningTotal
= runningTotal.add(count) ;
count
= count.add( BigInteger.ONE );
}
return runningTotal;
}
31.
public
static double Power(double x, int n)
{
double product = 1.0;
for (int i = 0; i < n; i++)
product *= x;
return product;
}
32.
public
static double power(double x, int n)
{
double product = 1.0;
for (int i = 0; i <
Math.abs(n); i++)
product *= x;
if (n >= 0)
return product;
else if (x != 0)
return 1.0 /
product;
else
{
System.err.println("0 to a negative power is undefined Ð "
+ "returning 0\n");
return 0;
}
}
33.
public
static int divisorSum (int n)
{
int sum = 0;
for (int i = 1; i <= n/2; i++)
if (n % i == 0)
sum += i;
return sum;
}
34.
public
static boolean isPrime(int n)
{
if (n < 2)
return
false; // 0 &
1 are not primes
if (n == 2)
return
true;
//
2 is prime
if (n % 2 == 0)
return
false;
//
evens > 2 are not prime
for (int d = 3; d*d <= n;
d++) // check if
any odd integer // in the range 3 through
// square root of n divides n
if (n % d
== 0)
return
false; // d
divides n; n not prime
return true;
//
otherwise, n is prime
}
35.
public
static int intLog2(int n)
{
int count = 0;
while (n > 1)
{
count++;
n /= 2;
}
return count;
}