
Recursive Functions
Sometimes when solving a problem, we can compute the solution of a simpler version of the
same problem. Eventually we reach the most basic version, for which the answer is known.

Content Learning Objectives

After completing this activity, students should be able to:

• Identify the base case and recursive step of the factorial function.

• Trace a recursive function by hand to predict the number of calls.

• Write short recursive functions based on mathematical sequences.

Process Skill Goals

During the activity, students should make progress toward:

• Evaluating mathematical functions to gain insight on recursion. (Information Processing)

Facilitation Notes

This activity is a first introduction to recursion using mathematical examples: factorial function,
Fibonacci numbers, and summation. Students learn how to read, trace, and write recursive
functions, but not yet how to formulate recursive solutions to problems.

Let students wrestle with these difficult concepts, and don’t give too much help on individual
questions. On Model 1, keep an eye on questions 1–3, and if a team is getting off track, have
them compare answers with a neighboring team. On #4, you might have to help teams refer
back to #2: they simply need to translate their previous answers into Python syntax.

When students get to Model 2, make sure they don’t spend more then 2–3 minutes on the first
question. It’s okay for them to make a mistake and correct it during #8. Some teams may get
sidetracked and spend too much time attempting to trace the recursion by hand. Report out
this model by discussing the last two questions as a class.

Model 3 should move a bit faster than Model 1, given how similar they are. Ask presenters
to write their team’s solution to #16 on the board. Address misconceptions about variables,
parameter passing, and return values. Have teams show you their working program for the
last question.

Copyright © 2019 C. Mayfield and H. Hu. This work is licensed under a Creative Com-
mons Attribution-NonCommercial-ShareAlike 4.0 International License.

99

Model 1 Factorial Function

”In mathematics, the factorial of a non-negative integer n, denoted by n!, is the product of all
positive integers less than or equal to n. For example, 5! = 5 × 4 × 3 × 2 × 1 = 120.”

Source: https://en.wikipedia.org/wiki/Factorial

n n!

0 1

1 1

2 2

3 6

4 24

5 120

Questions (15 min) Start time:

1. Consider how to calculate 4! = 24.

a) Write out all the numbers that need to be multiplied:

4! = 4 * 3 * 2 * 1

b) Rewrite the expression using 3! instead of 3 × 2 × 1:

4! = 4 * 3!

2. Write expressions similar to #1b showing how each factorial can be calculated in terms of a
smaller factorial. Each answer should end with a factorial (!).

a) 2! = 2 * 1!

b) 3! = 3 * 2!

c) 100! = 100 * 99!

d) n! = n ∗ (n − 1)!

3. What is the value of 0! based on Model 1? Does it make sense to define 0! in terms of a
simpler factorial? Why or why not?

0! is 1 (by convention for an empty product). We can’t say 0 × −1!, because factorial is only
defined for non-negative integers. At some point we need to define the solution in concrete
terms, without referencing itself.

100

https://en.wikipedia.org/wiki/Factorial

If we repeatedly break down a problem into smaller versions of itself, we eventually reach a basic
problem that can’t be broken down any further. Such a problem, like 0!, is referred to as the base case.

4. Consider the following Python function that takes n as a parameter and returns n!:

1 def factorial(n):

2 # base case

3 if n == 0:

4 return 1

5 # general case

6 product = 1

7 for i in range(n, 0, -1):

8 product *= i

9 return product

a) Review your answer to #2c that shows how to compute 100! using a smaller factorial.
Convert this expression to Python by using the function above instead of the ! operator.

100 * factorial(99)

b) Now rewrite your answer to #2d in Python using the variable n and the function above.

n * factorial(n - 1)

c) In the source code above, replace the “1” on Line 6 with your answer from b). Then cross
out Lines 7 and 8. Test the resulting function in a Python Shell. Does it still work?

Yes, amazingly.

d) What specific function is being called on Line 6?

The factorial function that is being defined.

e) Why is the if statement required on Line 3?

Without the base case, it would call itself forever (until running out of memory).

5. A function that refers to itself is called recursive. What two steps were necessary to define
the recursive version of factorial?

1. Write the base case, which was implemented using an if statement.
2. Write the recursive case, which was implemented using a function call.

6. Was a loop necessary to cause the recursive version of factorial to run multiple times?
Explain your reasoning.

No; the function keeps calling itself until the base case is reached. The for loop was removed
when we added the recursive call.

101

Model 2 Fibonacci Numbers

The Fibonacci numbers are a sequence where every number (after the first two) is the sum of
the two preceding numbers: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . .

Source: https://en.wikipedia.org/wiki/Fibonacci_number

We can define a recursive function to compute Fibonacci numbers. Enter the following code
into a Python Editor, and run the program to see the sequence.

1 def fibonacci(n):

2 # base case

3 if n == 1 or n == 2:

4 return 1

5 # general case

6 return fibonacci(n - 1) + fibonacci(n - 2)

7

8 if __name__ == "__main__":

9 for i in range(1, 6):

10 print(fibonacci(i))

Questions (10 min) Start time:

7. Based on the source code:

a) How many function calls are needed to compute fibonacci(3)? Identify the value of the
parameter n for each of these calls.

3 calls: n=3, n=2, n=1

b) How many function calls are needed to compute fibonacci(4)? Identify the value of the
parameter n for each of these calls.

5 calls: n=4, n=3, n=2, n=1, n=2

c) How many function calls are needed to compute fibonacci(5)? Identify the value of the
parameter n for each of these calls.

9 calls: n=5, n=4, n=3, n=2, n=1, n=2, n=3, n=2, n=1

8. Check your answers for the previous question by adding the following print statements to
the code and rerunning the program:

• Insert print("n is", n) at Line 2, before the # base case comment

• Insert print("fib(%d) is..." % i) at Line 10, before the print statement

102

https://en.wikipedia.org/wiki/Fibonacci_number

9. What happens if you try to compute fibonacci(0) in the Python Shell?

The function is called with decreasing negative numbers until the Shell displays the error:
“RuntimeError: maximum recursion depth exceeded while calling a Python object”.

10. How could you modify the code so that this situation doesn’t happen?

Add an if statement that returns -1 if n < 1.

Model 3 Summation

”In mathematics, summation (capital Greek sigma symbol: Σ) is the addition of a sequence of
numbers; the result is their sum or total.”

100

∑
i=1

i = 1 + 2 + 3 + . . . + 100 = 5050

Source: https://en.wikipedia.org/wiki/Summation

Questions (20 min) Start time:

11. Consider how to calculate
4
∑

i=1
i = 10.

a) Write out all the numbers that need to be added:
4
∑

i=1
i = 1 + 2 + 3 + 4

b) Show how this sum can be calculated in terms of a smaller summation.
4
∑

i=1
i = 4 +

3
∑

i=1
i

12. Write an expression similar to #11b showing how any summation of n integers can be
calculated in terms of a smaller summation.

n
∑

i=1
i = n +

n−1
∑

i=1
i

13. What is the base case of the summation? (Write the complete formula, not just the value.)

1

∑
i=1

i = 1

103

https://en.wikipedia.org/wiki/Summation

Here are important questions to consider before writing a recursive function:

• How can you define the problem in terms of a smaller similar problem?

• What is the base case, where you solve an easy problem in one step?

• For the recursive call, how will you make the problem size smaller?

To avoid infinite recursion, make sure that each recursive call brings you closer to the base case!

14. Implement a recursive function named summation that takes a parameter n and returns the
sum 1+ 2+ . . .+ n. It should only have an if statement and two return statements (no loops).

def summation(n):

if n == 1:

return 1

else:

return n + summation(n - 1)

15. Enter your code into a Python Editor, and test the function. Make sure that summation(100)

correctly returns 5050.

16. Implement a recursive function named geometric that takes three parameters (a, r, and n)
and returns the sum “a + ar + ar2 + ar3 . . .” where n + 1 is the total number of terms.

a) What is the base case?
geometric(a, r, 0) returns: a

b) What is the recursive case?
geometric(a, r, n) returns: a * r ** n + geometric(a, r, n - 1)

c) Write the function in Python:

def geometric(a, r, n):

if n == 0:

return a

else:

return a * r ** n + geometric(a, r, n - 1)

17. Enter your code into a Python Editor, and test the function. For example, if a = 10 and r = 3,
the first five terms would be 10, 30, 90, 270, and 810. Make sure that geometric(10, 3, 4)

correctly returns 1210 (the sum of those five terms).

(demonstrate to instructor)

104

Appendix

105

	Title Page
	Contents
	Introduction to Python
	Arithmetic Expressions
	Basic Data Structures
	Conditions and Logic
	Loops and Iteration
	Defining Functions
	Lists and Strings
	Importing Modules
	Nested Structures
	File Input/Output
	Visualizing Data
	Defining Classes
	Extending Classes
	Recursive Functions
	Role Cards
	Meta Activities
	Honor Code Case Studies

