
Extending Classes
A major benefit of object-oriented programming is the ability to inherit classes and eliminate
duplicate code. Inheritance allows you to define a new class based on an existing class.

Content Learning Objectives

After completing this activity, students should be able to:

• Read and interpret UML class diagrams for an existing code base.

• Evaluate pros and cons for designs with multiple similar classes.

• Define inheritance and demonstrate how to extend a base class.

Process Skill Goals

During the activity, students should make progress toward:

• Working with all team members to reach consensus on hard questions. (Teamwork)

Facilitation Notes

This activity involves a lot more source code than usual, but it’s doable if students don’t get lost
in the details. Encourage teams to manage their time well and not to think too deeply about
any of the questions. Point out that UML is helpful to summarize the classes without looking at
all the source code. Be sure to provide students with all the files in advance (see animals.zip).

On #5, have them quickly write a single word for each table cell. It’s not that important what
they write, as long as it connects back to the source code. The important part of Model 1 is
the last question. Have more than one team share their answers with the class to facilitate
discussion about object-oriented design.

The attributes and methods in the source code (and UML diagrams) are sorted alphabetically,
but the parameters of the __init__ method are in a different order. You might want to point
out this detail when students examine the source code from Model 2. Spend time reporting out
the last two questions about the advantages and disadvantages of the single-class design.

As with the other models, the most important question for Model 3 is the last one. Be sure
to save time for reporting out the advantages of using inheritance. If time permits, show other
examples of inheritance (with UML class diagrams). In particular, GUI libraries make extensive
use inheritance (see e.g., https://docs.python.org/3/library/tk.html).

Copyright © 2019 M. Stewart and C. Mayfield. This work is licensed under a Creative
Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

93

https://docs.python.org/3/library/tk.html


Model 1 UML Class Diagrams

Unified Modeling Language (UML) provides a standard way of visualizing how programs are
designed (http://www.uml.org/what-is-uml.htm). For example, a class diagram is a graphical
summary of the attributes and methods of a class.

Cow

position : tuple
respired : int
stomach : list

__init__()
eat(item : str)
move(delta : tuple)
respire()
speak()

Horse

position : tuple
respired : int
stomach : list

__init__()
eat(item : str)
move(delta : tuple)
nuzzle(position : tuple)
respire()
speak()

Lion

position : tuple
respired : int
stomach : list

__init__()
eat(item : str)
move(delta : tuple)
respire()
speak()

Pig

position : tuple
respired : int
stomach : list

__init__()
eat(item : str)
move(delta : tuple)
respire()
speak()
wallow()

class Cow:

def __init__(self):

self.position = (0, 0)

self.respired = 0

self.stomach = []

def eat(self, item):

if item == "grass":

self.stomach.append(item)

return "ate " + item

else:

return "This herbivore doesn't eat " + item

def move(self, delta):

self.position = (self.position[0] + delta[0],

self.position[1] + delta[1])

return "This quadruped walked to " + str(self.position)

def respire(self):

self.respired += 1

return "This cow respired through its nostrils."

def speak(self):

return "moo"

Questions (15 min) Start time:

1. Draw an arrow from each name in the diagram to where it’s defined in the code.

2. What are the attributes of Cow? What are the methods of Cow?

The attributes are position, respired, and stomach. The methods are __init__, eat, move,
respire, and speak.

3. What is listed in each section of the UML class diagram?

a) Top section:
class name

b) Middle section:
attributes

c) Bottom section:
methods

94

http://www.uml.org/what-is-uml.htm


4. Consider the following class diagrams:

Cow

position : tuple
respired : int
stomach : list

__init__()
eat(item : str)
move(delta : tuple)
respire()
speak()

Horse

position : tuple
respired : int
stomach : list

__init__()
eat(item : str)
move(delta : tuple)
nuzzle(position : tuple)
respire()
speak()

Lion

position : tuple
respired : int
stomach : list

__init__()
eat(item : str)
move(delta : tuple)
respire()
speak()

Pig

position : tuple
respired : int
stomach : list

__init__()
eat(item : str)
move(delta : tuple)
respire()
speak()
wallow()

a) What attributes do the classes have in common?

All have the same three: position, respired, and stomach.

b) What methods do the classes have in common?

All five have __init__, eat, move, respire, and speak.

c) What methods are unique to a particular class?

Horse has nuzzle, and Pig has wallow.

5. Quickly examine the source code for each of the classes to identify similarities and differ-
ences. Write one or two words in each table cell to summarize your findings.

Cow Horse Lion Pig

eat grass grass meat everything

move walked galloped walked ran

nuzzle N/A moved N/A N/A

respire nostrils muzzle nostrils snout

speak moo nay ROOOAR oink

wallow N/A N/A N/A in water

6. Consider what it would take to add a new method named sleep to each of the classes.

a) Describe the process of adding the same method to each source file.

Write the method in one class, and copy/paste into the others.

b) If a mistake is found later on, how would you correct the method?

Fix the problem in one class, and copy/paste into the others.

c) What problems do you see with this approach as more classes are added?

The amount of copying and pasting and other maintenance increases.

95



Model 2 Single-Class Approach

Given that the classes from Model 1 are similar, we could try combining them into a single class.
In order to keep track of differences, we would need to store additional attributes. We could
provide the information from Question #5 when creating an object:

angus = Animal("Cow", "grass", "walked", "nostrils", "moo")

The UML diagram below outlines this approach. As a team, discuss this design and become
familiar with the accompanying source code.

Animal

eats_only : str
moved : str
name : str
nasal : str
position : tuple
respired : int
sound : str
stomach : list

__init__(name : str, eats_only : str, moved : str, nasal : str, sound : str)
eat(item : str)
move(delta : tuple)
nuzzle(position : tuple)
respire()
speak()
wallow()

Questions (10 min) Start time:

7. Circle the three original attributes that were defined in Model 1.
Circled: position, respired, and stomach

8. Circle the two methods that were NOT common to all four classes in Model 1.
Circled: nuzzle and wallow

9. Write a statement that creates an Animal object representing a lion. Assign it to a variable
named simba.

simba = Animal("Lion", "meat", "walked", "nostrils", "ROOOAR")

10. What methods does simba now have that it did not have in Model 1?

nuzzle and wallow

96



11. Describe 1–2 advantages the Model 2 design has compared to Model 1.

There’s only one class. You don’t have several copies of the same code lying around.

12. Describe 1–2 disadvantages the Model 2 design has compared to Model 1.

It’s awkward to use the constructor. And not every object should have every method.

Model 3 Derived Classes

We can improve the code from Model 2 by using derived classes for Cow, Horse, Lion, and Pig.
These classes only contain the attributes and methods specific to them. Animal is a base class
that contains attributes and methods they all have in common. This language feature is known
as inheritance, because derived classes “inherit” attributes and methods from the base class.

The UML diagram below outlines this approach. As a team, discuss this design and become
familiar with the accompanying source code.

Animal

eats_only : str
moved : str
name : str
position : tuple
respired : int
sound : str
stomach : list

__init__(name : str, eats_only : str, moved : str, sound : str)
eat(item : str)
move(delta : tuple)
respire()
speak()

Cow

__init__()

Horse

__init__()
nuzzle(position : tuple)
respire()

Lion

__init__()

Pig

__init__()
respire()
wallow()

97



Questions (20 min) Start time:

13. Open the lion.py source file. How many methods are defined in the Lion class? List the
name of each one.

Just one: the __init__ method.

14. Type the following code into a Python Shell (in the same location as the source files). What
methods are listed in the help?

from lion import Lion

help(Lion)
In addition to the __init__ method, it lists the
methods inherited from animal.Animal (the
base class).

15. Write a statement that creates a Lion object. Assign it to a variable named simba. How is
this statement different from Question #9?

simba = Lion()

It’s much easier than before, because the Lion constructor is doing the work for you.

16. In a Python Shell, what is the value of simba.speak()? Where did this value come from?

"ROOOAR". The constructor passed this value to Animal, which prints it out later.

17. Does simba have any methods that it did not have in Model 1? Justify your answer.

No, it does not. It only inherits the same four that it had before.

18. Based on the source files, how does the __init__ method of Animal differ from the __init__
methods of the derived classes?

Animal defines and stores the value of all the parameters. The other classes simply call Animal’s
constructor.

19. What is the meaning of the built-in function super() that is used in the derived classes?

It refers to the base class and is used to call the __init__ method of Animal.

20. Describe 1–2 advantages the Model 3 design has compared to Model 2.

Every class has its own name, and objects don’t have methods they’re not supposed to have.
The code is also easier to extend when adding new animals.

98


	Title Page
	Contents
	Introduction to Python
	Arithmetic Expressions
	Basic Data Structures
	Conditions and Logic
	Loops and Iteration
	Defining Functions
	Lists and Strings
	Importing Modules
	Nested Structures
	File Input/Output
	Visualizing Data
	Defining Classes
	Extending Classes
	Recursive Functions
	Role Cards
	Meta Activities
	Honor Code Case Studies

