
Defining Classes
In this activity, we’ll take a first look at object-oriented programming. Classes provide a means
of bundling data and functionality together.

Manager: Recorder:

Presenter: Reflector:

Content Learning Objectives

After completing this activity, students should be able to:

• Write a class definition that has several attributes and methods.

• Explain what a constructor is, when it is called, and what it does.

• Discuss what “object-oriented” means using concrete examples.

Process Skill Goals

During the activity, students should make progress toward:

• Developing and testing the design of a program incrementally. (Problem Solving)

Facilitation Notes

NOTE: This activity was designed with an “objects late” approach in mind. It might not be
suitable for an “objects early” course, given the order in which the example class is presented.

The source code for Model 1 should be provided to students (see atom.py). When reporting out,
focus the discussion on Questions #5 and #7. It may be helpful to step through the code with
a debugger. Students with prior experience might wonder why Line 19 doesn’t raise an error
(since the attribute wasn’t “defined” in a constructor).

Model 2 solves the problem introduced in Question #7, namely that different objects might have
different attributes. Don’t let students get bogged down with the chemistry examples; it’s not
essential that they understand the details. (An isotope is one of two or more atoms with the
same atomic number but with different numbers of neutrons.)

By Model 3, students should have a complete version of the Atom class implemented with all
four methods. You may need to guide the discussion and report out both during the middle
and the end of these questions. Give multiple teams the opportunity to explain object-oriented
programming in their own words.

Copyright © 2021 T. Shepherd, C. Mayfield, and H. Hu. This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

https://drive.google.com/drive/folders/1CxGpmO-vsoYlrcQZ-6qSbmgnw2mLdbn9?usp=sharing


Model 1 Attributes and Methods

Previously you have used built-in types like int, str, and list. Each of these types comes with
its own methods, such as isdigit and append. You can create new types of data, and methods
to go with them, by defining a class. Classes specify the attributes (instance variables) and
methods (functions) that each object belonging to the class will have.

1 class Atom:
2 """An element from the periodic table."""
3

4 def neutrons(self):
5 """Returns the number of neutrons the element has"""
6 number = self.isotope - self.atomic
7 print("{} has {} neutrons".format(self.symbol, number))
8 return number
9

10 def grams_to_moles(self, grams):
11 """Converts the mass of an element in grams to moles"""
12 moles = grams / self.mass
13 print("{.1f} g is {.1f} moles of {}".format(grams, moles, self.symbol))
14 return moles
15

16 if __name__ == "__main__":
17

18 oxygen = Atom() # create an Atom object
19 oxygen.symbol = 'O'
20 oxygen.atomic = 8
21 oxygen.mass = 15.999
22 oxygen.isotope = 16
23 carbon = Atom() # create another Atom object
24 carbon.symbol = 'C'
25 carbon.mass = 12.001
26 oxygen.neutrons()
27 oxygen.grams_to_moles(24)
28 carbon.grams_to_moles(24)

Questions (15 min) Start time:

1. Examine the class definition (the top half of the code):

a) What is the name of the class? Atom

b) What are the names of the two methods? neutrons and grams_to_moles

c) What is the name of the first parameter for all methods? self



2. Now examine the "__main__" block of code:

a) How many different Atom objects were created? two

b) Identify the variable name of each object. oxygen and carbon

c) How many attributes were assigned in the oxygen object? List the names.

4: symbol, atomic, mass, isotope

d) How do the number of arguments for each method call differ from the number of param-
eters specified in the method definition? one less

3. How does the syntax referencing an attribute differ inside vs. outside the class definition?

inside class: self.identifier vs. outside class: object.identifier

4. When the grams_to_moles method is called (in the last two lines), what is the value of the
self parameter?

In this example, oxygen or carbon (depending on which object was before the method call).

5. Enter the expression type(oxygen) in a Python Shell. Explain the meaning and significance
of the output.

The output is <class '__main__.Atom'>, meaning that oxygen belongs to the Atom class from
the __main__ module. It’s significant because we are the ones who defined this data type.

6. Write code to create a new Atom object called hydrogen, and assign one of the attributes listed
in Question #2c.

hydrogen = Atom()
hydrogen.symbol = 'H'

7. Call the neutrons method on carbon in a Python Shell. What is the reason for the error?

The attributes self.symbol, self.isotope, and self.atomic have not yet been assigned.



Model 2 Constructors

For each class defined, you can provide a constructor that initializes attributes of a new object.
In Python, the constructor is always named __init__ (with two underscores before and after
the word init). The constructor is called automatically when you create a new object.

Add the following constructor to the top of your Atom class. By convention, the constructor is
typically the first method in a class definition. Also edit the "__main__" block of code as shown.

class Atom:
"""An element from the periodic table."""

def __init__(self, symbol, atomic, mass, isotope=12):
"""Constructs an Atom with the given values."""
self.symbol = symbol
self.atomic = atomic
self.mass = mass
self.isotope = isotope

... previous methods from Model 1 ...

if __name__ == "__main__":

oxygen = Atom('O', 8, 15.999, 16)
carbon = Atom('C', 6, 12.001)
oxygen.neutrons()
carbon.neutrons()
oxygen.grams_to_moles(24)
carbon.grams_to_moles(24)

Questions (15 min) Start time:

8. What is always the name of the constructor?

__init__

9. Although there is no direct call to the constructor, explain how you know this method is
executed when an object is created.

The instance variables have a value when used in the methods neutrons and grams_to_moles.
There is no error message this time.

10. Consider your answer to Question #7. What is one advantage of defining a constructor for
a class?

It automatically initializes the attributes so that methods don’t error if they aren’t called in the
correct order.



11. In a Python Shell, try to create a new Atom object called hydrogen with only two arguments.
Write your statement in the space below. What is the reason for the error you see?

hydrogen = Atom('H', 1) Based on the definition of __init__, at least three parameters are
required to define an Atom object.

12. When creating an object of the Atom class, what is the value of isotope if:

a) three arguments are given? 12

b) four arguments are given? the value of the last argument

13. Print the value of self.isotope in a Python shell.

a) What is the reason for the error? NameError: ’self’ is not defined

b) In order to eliminate this error, what should be printed instead? oxygen.isotope

14. For each line below, what is the value of self?

a) oxygen = Atom(’O’, 8, 15.999, 16) The object that will be assigned to oxygen

b) carbon = Atom(’C’, 6, 12.001) The object that will be assigned to carbon

c) oxygen.neutrons() The object currently referenced by oxygen

d) carbon.neutrons() The object currently referenced by carbon

15. Recall that a variable may be “local” (defined within a function), “global” (defined in the
non-indented or "__main__" block of code), or “built-in” (part of Python itself).

a) Explain why the isotope attribute is not a global variable.

it’s defined in the __init__ function (not __main__)

b) Explain why the isotope attribute is not a local variable.

it’s used outside the constructor in other methods

c) How is each method of the class able to access the isotope attribute?

Through the self parameter, which is a local variable in each method.



Model 3 Object-Oriented

Edit the Atom class further to include the variable avogadros, the method grams_to_atoms, and
the modified "__main__" block of code. Note that class variables (like avogadros) are typically
defined before the __init__ method.

class Atom:
"""An element from the periodic table."""

avogadros = 6.02E23

... previous methods from Model 2 ...

def grams_to_atoms(self, weight):
"""Converts the mass of an element in grams to number of atoms."""
answer = Atom.avogadros * self.grams_to_moles(weight)
print("{:.1f} g is {:.1e} atoms of {}".format(weight, answer, self.symbol))
return answer

if __name__ == "__main__":

oxygen = Atom('O', 8, 15.999, 16)
carbon = Atom('C', 6, 12.001)
oxygen.neutrons()
oxygen.isotope = 18
oxygen.neutrons()
oxygen.grams_to_atoms(24)
carbon.grams_to_atoms(24)

Questions (15 min) Start time:

16. Examine the grams_to_moles method (from Model 1):

a) Identify the three main variables used in grams_to_moles:

self, grams, moles

b) For each variable, what is its scope? (local or global)

local, local, local

17. What determines whether a variable is defined as an attribute or a local variable?

The self parameter defines (stores) all the attributes. Local variables, like moles, are defined
in methods directly.



18. Now examine the grams_to_atoms method (from Model 3).

a) What variable was initialized in the Atom class outside the constructor and methods?

Atom.avogadros

b) How does the syntax of a class variable differ from an attribute (instance variable)?

It uses the class name in the identifier rather than self or the object name.

19. Would it be possible to rewrite the grams_to_atoms method as a global function instead? If
so, explain how the function would differ.

Yes; simply define the function outside of the class. Rename the parameter self to atom to
avoid confusion.

20. How would you rewrite the line oxygen.grams_to_atoms(24) to call the global function
defined in the previous question?

grams_to_atoms(oxygen, 24)

21. Consider the built-in str class:

a) Given the statement s = "Hello", what data is stored in the str object?

The word Hello.

b) Show an example line of code that calls the upper method on the object s.

print(s.upper())

c) If the upper method were defined as a global function instead, how would you call it?

print(upper(s))

22. Based on the previous two questions, explain what the term “object-oriented” means.

It means that methods are built into objects, as opposed to being standalone functions. We
call those methods through the objects.

23. Summarize the advantages you perceive for writing code as methods in classes instead of
global functions.

Either way, we have to pass the object to the function. It’s easier to think about the object first,
and then call methods that take the remaining parameters.


	Attributes and Methods
	Constructors
	Object-Oriented

