
File Input/Output
Most data is stored in files, not input by the user every time. In this activity, you’ll learn the
basics of reading and writing plain text files.

Content Learning Objectives

After completing this activity, students should be able to:

• Create a new text file, and output several lines to it.

• Open an existing file, and append several lines to it.

• Read a text file line by line, and extract data from it.

Process Skill Goals

During the activity, students should make progress toward:

• Justifying answers based on the results of an experiment. (Critical Thinking)

Facilitation Notes

Be aware of what editors and operating systems your students are using. They might need
help changing directories to find the input/output files used in this activity. Model 1 may take
a little more time for setup and discussion. The source code should be provided (see write.py

in the repository).

Model 2 switches from using an Editor to using the Shell. Help students figure out that the
write method returns the number of characters written. Depending on the environment, they
might not see the output file contents until after calling the close or flush method. If it comes
up, discuss how buffering works when reporting out.

Notice that the input file for Model 3 is the out.txt file from Model 1 and Model 2. If students
corrupt their out.txt file, some of their answers might be incorrect. If needed, you can give
them a correct version of out.txt before they complete the Model 3 table. Report out after most
teams reach Question #12, so that teams will have adequate time to answer the last question.

By the way, the out.txt data is in FASTA format, a standard in bioinformatics for representing
sequences. See https://en.wikipedia.org/wiki/FASTA_format.

Copyright © 2019 T. Shepherd, C. Mayfield, and H. Hu. This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

71

https://en.wikipedia.org/wiki/FASTA_format


Model 1 Writing to a File

The following example creates a new file (in the current/default folder) named out.txt and
writes several lines of output to it. Run the code, and examine the contents of the resulting
out.txt file. In the space below, write the contents of out.txt to the right of the code.

1 outfile = open("out.txt", "w")

2 outfile.write("Example ")

3 outfile.write("output ")

4 outfile.write("text file\n")

5 outfile.write("xyz Coordinates\n")

6 outfile.write("MODEL\n")

7 outfile.write("ATOM %3d" % 1)

8 seq = "n %5.1f%5.1f%5.1f" % (0, 1, 2)

9 outfile.write(seq)

10 outfile.write("\n")

11 outfile.close()

out.txt

Example output text file

xyz Coordinates

MODEL

ATOM 1n 0.0 1.0 2.0

Questions (15 min) Start time:

1. Based on the Python code:

a) How many arguments are passed to open? What are their types? two strings

b) What variable stores the file object returned by the open function? outfile

c) Identify the names of all methods used on this file object in the code. write, close

d) What type of data does the write method require for its argument? string

2. Based on the out.txt file:

a) How many times was the write method called to create the first line of text? 3

b) How many times was the write method called to create the second line of text? 1

c) What does the "\n" character do? It ends the current line.

d) How is the write method different from the print function? Doesn’t append a newline.

3. Write a program that creates a file named lines.txt and writes 100 lines like this:

Line #1

Line #2

Line #3

Line #4

...

outfile = open("lines.txt", "w")

for i in range(1, 101):

outfile.write("Line #%d\n" % i)

outfile.close()

72



Model 2 Appending to a File

The second argument of open specifies the mode in which the file is opened. When writing
output to a file, there are two basic modes:

• The write ("w") mode will overwrite/replace the file contents.

• The append ("a") mode will add new data to the end of the file.

Either mode will create the file automatically if it does not already exist. Enter the following
lines into a Python Shell, and record the output at each step.

Python code Shell output

afile.write("new line\n") NameError: name ’afile’ is not defined

afile = open("out.txt", "a")

afile.write("new line\n") 9

afile.write(2.0) TypeError: write() argument must be str, not float

afile.write("2.0") 3

afile.close()

afile.write("new line\n") ValueError: I/O operation on closed file.

Questions (10 min) Start time:

4. Explain what happens as a result of the line: afile = open("out.txt", "a")

The existing out.txt file (from Model 1) is open for appending.

5. How do the arguments passed to the open function differ for writing a new file in comparison
to appending an existing file?

The second argument is "a" instead of a "w".

6. What does the write method return? Run help(afile.write) to check your answer.

The number of characters written (which is always equal to the length of the string).

7. Explain the reason for the error observed after entering:

a) the first line of code: afile.write("new line\n") the file wasn’t open

b) the last line of code: afile.write("new line\n") the file wasn’t open

c) the statement: afile.write(2.0) you can only write strings to files

73



Model 3 Reading from a File

Programs often require input data from an external file source. Not surprisingly, there are
methods for reading the contents of files. Enter the following lines into a Python Shell.

Python code Shell output

infile = open("out.txt", "r")

infile.readline() ’Example output text file\n’

infile.readline() ’xyz Coordinates\n’

infile.readlines() list of the remaining lines

infile.readline() ”

infile.close()

infile = open("out.txt", "r")

for line in infile:

print(line) prints each line double spaced

infile.close()

infile = open("out.txt", "r")

for i in range(3):

infile.readline()

line = infile.readline()

line ’ATOM 1n 0.0 1.0 2.0\n’

print(line[0]) A

print(line[0:5]) ATOM

words = line.split()

words [’ATOM’, ’1n’, ’0.0’, ’1.0’, ’2.0’]

print(words[0]) ATOM

infile.close()

Questions (20 min) Start time:

8. Based on the output above:

a) What type of data does the readline method return? string

b) What type of data does the readlines method return? list of strings

74



9. Why did the readline method return different values each time?

Each time readline is called, it returns the next line of the file.

10. What happens if you try to read past the end of the file? Justify your answer.

From then on, readline returns '', and readlines returns an empty list.

11. What is the difference between the two for loops in Model 3?

The first loop iterates and prints every line of the file. The second for loop reads only the first
three lines, making it possible to assign the fourth line in the next statement.

12. Consider the output of the first for loop:

a) Why does the program display the file as if it were double spaced?

Each line in the file ends with a newline character \n, and print adds another one.

b) How would you change the code to avoid printing extra blank lines?

Change the function: print(line, end='') Or change the string: print(line[:-1])

13. Based on the second half of Model 3:

a) Why was it necessary to open the file again? The data had already been read previously.

b) Write code that would output 1.0 using line print(line[17:20])

c) Write code that would output 1.0 using words print(words[3])

14. Consider a file names.txt that contains first and last names of 100 people, with one name
per line (e.g., “Anita Borg”). Write a program that prints all the last names (the second word of
each line) in the file.

infile = open("names.txt", "r")

for line in infile:

words = line.split()

print(words[1])

infile.close()

75



76


	Title Page
	Contents
	Introduction to Python
	Arithmetic Expressions
	Basic Data Structures
	Conditions and Logic
	Loops and Iteration
	Defining Functions
	Lists and Strings
	Importing Modules
	Nested Structures
	File Input/Output
	Visualizing Data
	Defining Classes
	Extending Classes
	Recursive Functions
	Role Cards
	Meta Activities
	Honor Code Case Studies

