
Nested Structures
Containers are objects that store other objects. For example, list stores a sequence of objects,
and dict stores a mapping of objects to objects. Containers can also hold other containers,
which makes it possible to represent any type (or shape) of data.

Content Learning Objectives

After completing this activity, students should be able to:

• Explain how rows and columns of data can be stored in lists.

• Write nested for loops to iterate data and compute functions.

• Navigate a complex data structure with dictionaries and lists.

Process Skill Goals

During the activity, students should make progress toward:

• Developing algorithms that loop through lists to compute a result. (Problem Solving)

Facilitation Notes

Given the complexity of the of examples, it’s important to provide students with the source
code in advance. See the accompanying nested.py file in the repository. The students should
only have to type the expressions in the tables.

On Model 1, you might want to explain that 'R' and 'Y' represent Red and Yellow discs. It’s
less obvious what they mean when printed in black and white. You might also want to point
out the optional comma after the last row. Python allows you to put a comma after every item
in a list, including the last one, for convenience.

When reporting out Model 1 and Model 3, it’s useful to show how these data structures look
on Python Tutor (pythontutor.com). You might want to use the “render all objects on the heap
(Python/Java)” option to discuss references.

Model 2 explores nested for loops in two ways: first with containers (groceries and grid) and
then with the range function. Consider having teams write their solutions on the board, one
team per question. If time permits, step through the solutions with a debugger or Python Tutor.

Copyright © 2019 T. Shepherd, C. Mayfield, and H. Hu. This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

63

http://www.pythontutor.com/

Model 1 Lists of Lists

Connect Four (® Hasbro, Inc.) is a two-player game in which the players take turns dropping
colored discs into a six-row by seven-column grid. The objective of the game is to be the first
player to form a horizontal, vertical, or diagonal line of four of one’s own discs. (paraphrased
from https://en.wikipedia.org/wiki/Connect_Four)

current state of the game

grid = [

[' ', ' ', ' ', ' ', ' ', ' ', ' '],

[' ', ' ', ' ', ' ', ' ', ' ', ' '],

['Y', ' ', ' ', ' ', 'Y', 'Y', ' '],

['R', ' ', ' ', 'Y', 'R', 'R', ' '],

['R', 'R', 'Y', 'R', 'Y', 'R', ' '],

['R', 'Y', 'R', 'Y', 'Y', 'Y', 'R'],

]

Enter the grid code above into a Python Shell, and run each line of the table below. If the output
is longer than one line, summarize it with a few words.

Python code Shell output

print(grid) prints the grid without line breaks

print(grid[5]) [’R’, ’Y’, ’R’, ’Y’, ’Y’, ’Y’, ’R’]

print(grid[5][0]) R

type(grid) <class ’list’>

type(grid[5]) <class ’list’>

type(grid[5][0]) <class ’str’>

len(grid) 6

len(grid[5]) 7

len(grid[5][0]) 1

import pprint

help(pprint) Pretty-print a Python object to a stream

pprint.pprint(grid) prints the grid on multiple lines

for item in grid: prints each row on a separate line
print(item)

for i in range(len(grid)): prints each row on a separate line
print(grid[i])

64

https://en.wikipedia.org/wiki/Connect_Four

Questions (15 min) Start time:

1. What does grid look like when you first print it? (How is the output different from the
original format shown in Model 1?)

It is not formatted neatly; the entire list prints with no line breaks.

2. What does grid look like when you use pprint instead? Explain what pprint means.

It looks rectangular and is much easier to read. The word pprint stands for “pretty-print”.

3. When viewed as a rectangle, how many “rows” and “columns” does grid have?

There are six rows and seven columns.

4. What type of object is grid? What type of objects does it contain?

grid is a list, and its elements are also lists.

5. What type of object is grid[5]? What type of objects does it contain?

grid[5] is a list, and its elements are strings.

6. In the expression grid[5][0], which index corresponds to the row, and which index corre-
sponds to the column?

The first index [5] is the row, and the second index [0] is the column.

7. Is grid a list of rows or a list of columns? Justify your answer.

It is a list of rows; len(grid) is 6, and the for loop prints rows.

65

8. Describe how to append one more row to grid.

Simply use grid.append([...]) to add the entire row in one step.

9. What is necessary to append a “column” to grid?

We need a for loop to append one string at a time to the end of each row.

Model 2 Nested for Loops

Example A
We typically use a for loop to examine the contents of a list:

1 groceries = ["Apples", "Milk", "Flour", "Chips"]

2 for item in groceries:

3 print("Don't forget the", item)

Example B
If a list contains another list, we need a for loop that contains another for loop. For example,
to count the “spaces” in the grid from Model 1:

4 count = 0

5 for row in grid: # outer loop

6 print("row =", row)

7 for cell in row: # inner loop

8 print("cell =", cell)

9 if cell == ' ':

10 count += 1

11 print(count, "spaces remaining")

Questions (15 min) Start time:

10. As a team, discuss the two examples from Model 2. Predict how many times each of the
following lines will execute. Then run the code and check your answers based on the output.

a) How many times does Line 3 execute? Predicted: Actual: 4

b) How many times does Line 6 execute? Predicted: Actual: 6

c) How many times does Line 8 execute? Predicted: Actual: 42

d) How many times does Line 10 execute? Predicted: Actual: 22

66

11. What determined how many times the “for item” loop would run? Number of groceries

12. Answer the following questions in terms of grid.

a) What determined how many times the “for row” loop would run?

The number of rows in the grid

b) What determined how many times the “for cell” loop would run?

The total number of cells in the grid (i.e., number of rows * number of cols)

13. In the example below, predict how many times the print statement will execute. Then run
the code to verify your answer. 6 * 7 = 42 times

for i in range(6):

for j in range(7):

print(i, '+', j, '=', i + j)

14. Rewrite the nested for loops in Model 2 Lines 4–10 using the range function. Replace
the variables row and cell with i and j, respectively. For simplicity, you may omit the print

statements in your answer.

count = 0

for i in range(len(grid)): # outer loop

for j in range(len(grid[i])): # inner loop

if grid[i][j] == ' ':

count += 1

15. Write a for loop (using range) that computes the factorial of a given integer n. Recall that
n! = n ∗ (n − 1) ∗ (n − 2) ∗ . . . ∗ 1. Store your result in a variable named fact.

fact = 1

for i in range(n, 0, -1):

fact *= i

16. Write nested loops that compute and display the factorial of each integer from 1 to 20. Use
your code from the previous question as the inner loop. Your output should be in this format:

The factorial of 1 is 1

The factorial of 2 is 2

The factorial of 3 is 6

The factorial of 4 is 24

The factorial of 5 is 120

for n in range(1, 21):

fact = 1

for i in range(n, 0, -1):

fact *= i

print("The factorial of", n, "is", fact)

67

Model 3 Nested Dictionaries

Containers can be nested in arbitrary ways. For example, the following data could be described
as a “dictionary of dictionaries of integers and lists of strings”.

Enter the following code into a Python Shell, and complete the table. If the output is longer
than one line, summarize it with a few words.

movies = {

"Casablanca": {

"year": 1942,

"genres": ["Drama", "Romance", "War"],

},

"Star Wars": {

"year": 1977,

"genres": ["Action", "Adventure", "Fantasy"],

},

"Groundhog Day": {

"year": 1993,

"genres": ["Comedy", "Fantasy", "Romance"],

},

}

Python code Shell output

movies prints all of movies without any formatting

movies["Casablanca"] {’genres’: [’Drama’, ’Romance’, ’War’], ’year’: 1942}

movies["Casablanca"]["year"] 1942

movies["Casablanca"]["genres"] [’Drama’, ’Romance’, ’War’]

type(movies) <class ’dict’>

type(movies["Casablanca"]) <class ’dict’>

type(movies["Casablanca"]["year"]) <class ’int’>

type(movies["Casablanca"]["genres"]) <class ’list’>

len(movies) 3

len(movies["Casablanca"]) 2

len(movies["Casablanca"]["year"]) TypeError: object of type ’int’ has no len()

len(movies["Casablanca"]["genres"]) 3

for key in movies:

print(key) prints the keys: Casablanca, Groundhog Day, Star Wars

for key, val in movies.items():

print(key, val) prints each individual movie (the inner dictionaries)

68

Questions (15 min) Start time:

17. Explain the TypeError you encountered.

The expression movies["Casablanca"]["year"] is an integer, so you can’t get the length of it.

18. In the expression movies["Casablanca"]["genres"], describe the purpose of the strings
"Casablanca" and "genres".

They are keys to their corresponding dictionaries. The first string selects a particular movie,
and the second string selects the corresponding movie data.

19. When iterating a dictionary using a for loop (i.e., for x in movies), what gets assigned to
the variable?

The keys of the dictionary.

20. What is wrong with the following code that attempts to print each movie?

for i in range(len(movies)):

print(movies[i])

You cannot iterate a dictionary by index number;
it is not a sequence. Running this code results in
KeyError: 0.

21. Write nested loops that output every genre found under the movies dictionary. You should
have nine total lines of output.

for key in movies:

movie = movies[key]

for genre in movie["genres"]:

print(genre)

22. Each movie in Model 3 has a title, a year, and three genres.

a) Is it necessary that all movies have the same format? No

b) Name one advantage of storing data in the same format: It simplifies the code

c) Show how you would represent The LEGO Movie (2014) with a runtime of 100 min and
the plot keywords “construction worker” and “good cop bad cop”.

"The LEGO Movie": {

"year": 2014,

"runtime": "100 min",

"keywords": ["construction worker", "good cop bad cop"],

},
69

70

	Title Page
	Contents
	Introduction to Python
	Arithmetic Expressions
	Basic Data Structures
	Conditions and Logic
	Loops and Iteration
	Defining Functions
	Lists and Strings
	Importing Modules
	Nested Structures
	File Input/Output
	Visualizing Data
	Defining Classes
	Extending Classes
	Recursive Functions
	Role Cards
	Meta Activities
	Honor Code Case Studies

