
Importing Modules
Python comes with an extensive library of built-in modules that make it easy to accomplish
everyday tasks. With just a few lines of code, you can do anything from generating random
numbers and drawing graphics to sending emails and accessing websites.

Content Learning Objectives

After completing this activity, students should be able to:

• Use the random module to generate random float and integer sequences.

• Explain the purpose of the common line if __name__ == "__main__".

• Summarize several built-in modules, including random and turtle.

Process Skill Goals

During the activity, students should make progress toward:

• Navigating the Python standard library documentation. (Information Processing)

Facilitation Notes

This activity addresses misconceptions about the import statement and shows how to write
“longer” programs using multiple source files. Model 1 uses the random module as an example:
someone else has already written code to generate random numbers, and you can import this
code into your own program.

During Model 2, students learn how to write their own modules that can be imported. To save
time, be sure to provide students with the source files at the beginning of the activity. When
reporting out, spend time discussing the Python idiom if __name__ == "__main__".

Model 3 introduces the turtle module, but it’s more about navigating the Python library doc-
umentation. Before students answer the questions, you might show them how to bring up the
documentation page (https://docs.python.org/3/library/turtle.html). Have each team report
out on the last question and share with the class what they found in the standard library.

Copyright © 2019 T. Shepherd, C. Mayfield, and H. Hu. This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

57

https://docs.python.org/3/library/turtle.html


Model 1 Random Numbers

You can generate a sequence of numbers using the Python random module. A mathematical
function is used to produce the sequence based on a seed value. (If no seed is given, the current
system time is used.) The sequence is more accurately described as pseudorandom, since its
output is inherently predictable.

Python code Shell output

import randint ImportError

import random

randint(1, 10) NameError

random.randint(1, 10) integer in range [1..10]

from random import randint

randint(1, 10) integer in range [1..10]

seed(100) NameError

random.seed(100)

random.random() 0.1456692551041303 – decimal in range [0..1)

random.random() 0.45492700451402135 – decimal in range [0..1)

random.seed(100)

random.random() 0.1456692551041303 – decimal in range [0..1)

random.random() 0.45492700451402135 decimal in range [0..1)

Questions (20 min) Start time:

1. What is the name of the module that must be imported before generating a random number?

random

2. Based on Model 1, what are the names of three functions defined in the random module?

randint(), random(), seed()

3. Identify the syntax of the statement to import:

a) a module import module

b) a function from module import function

58



4. Identify the syntax of a function call assuming:

a) the module was imported module name "." function name

b) the function was imported function name

5. How could you eliminate the need for typing the word “random” twice (in a function call)
to generate a random number?

from random import random

6. Compare the shell output of your team with at least one other team. Describe the similarities
and differences observed.

Different random numbers initially and then same sequence of numbers after a seed is set – but
unique for each different seed argument.

7. What is the effect on the random numbers generated after calling the seed method?

same sequence of random numbers generated

8. Describe one reason to set the same seed each time a program is run, and one reason to not
use the seed method.

Use: debugging and testing. Don’t use: when it’s supposed to be random.

9. Run random.random() multiple times. Based on the results, describe:

a) the range of numbers returned by the random function between [0..1) exclusive

b) the nature of the distribution of numbers generated. (Do they appear clustered around a
particular value, or are they spread out uniformly over the range?) uniform

10. Run random.randint(1, 10) multiple times. Based on the results, describe:

a) the range of numbers returned by the randint function between [0..10] inclusive

b) the nature of the distribution of numbers generated. (Do they appear clustered around a
particular value, or are they spread out uniformly over the range?) uniform

59



Model 2 Multiple Modules

Create a new file move.py, and enter the code:

1 import random

2

3 def angle():

4 number = random.randint(-90, 90)

5 return number

6

7 print("in move: __name__ ==", __name__)

8 print("will always execute: angle ==", angle())

9

10 if __name__ == "__main__":

11 print("only if True: angle ==", angle())

Run move.py, and record the output below. (numbers will vary)

Output Line 1 in move: __name__ == __main__

Output Line 2 will always execute: angle == 68

Output Line 3 only if True: angle == -39

Create a new file stop.py (in the same directory), and enter the code:

1 import move

2

3 print("in stop: __name__ ==", __name__)

4 print("from module: angle ==", move.angle())

Run stop.py, and record the output below. Draw an arrow from each line of output to its
corresponding print statement in the code.

Output Line 1 in move: __name__ == move arrow to Line 7 of move.py

Output Line 2 will always execute: angle == 74 arrow to Line 8 of move.py

Output Line 3 in stop: __name__ == __main__ arrow to Line 3 of stop.py

Output Line 4 from module: angle == -11 arrow to Line 4 of stop.py

60



Questions (15 min) Start time:

11. Upon execution of move.py:

a) what is the value of the variable __name__? __main__

b) does the output correspond solely to the print statements contained in this file? yes

12. Upon execution of stop.py:

a) what is the value of the variable __name__ from the print statement in move move

b) what is the value of the variable __name__ from the print statement in stop __main__

c) does the output correspond solely to the print statements contained in this file? no

13. What was the reason to include the import move statement in stop.py?

To use the angle function defined in move.py.

14. Based on the output of stop.py, describe what happens (as a side effect) when another
module is imported.

All the code in the imported file, including top-level print statements, is executed.

15. What line in move.py did not print when stop.py was executed? Why?

The print “only if True” statement inside if __name__ == "__main__" was False because
__name__ == "move" that time.

16. In order for the output of stop.py to correspond solely to the print statements contained in
stop.py, what modifications need to be made to move.py?

Move all the print statements inside if __name__ == "__main__".

17. Describe what code in general to include inside if __name__ == "__main__", and why.

Code that you don’t want to be executed when the module is imported.

61



Model 3 Turtle Graphics

The turtle module can be used to create graphics. Create a new file draw.py (in the same
directory), and enter the following code. Run the program and see what happens.

1 import move

2 import turtle

3

4 def randomwalk(steps):

5 turtle.shape("turtle")

6 turtle.color("green")

7 for i in range(steps):

8 turtle.left(move.angle())

9 turtle.forward(10)

10 turtle.bye()

11

12 if __name__ == "__main__":

13 randomwalk(100)

Questions (10 min) Start time:

18. For each outcome, describe the type of edit necessary to draw.py and move.py:

a) a blue turtle change the argument of turtle.color() to "blue"

b) a longer simulation change the argument of randomwalk() to a number greater than 100

c) a smaller range of angles (e.g., -45 to 45) that define the direction of the turtle

change the argument(s) of random.ranint() in the angle function defined in move.py

d) a random range of integers (e.g., 10 to 20) that define the length of a turtle move

import random and change argument of turtle.forward() to random.ranint(10,20)

19. Describe the type of edit necessary to produce the same outcome in Question #18d if the
argument of forward is move.length() instead of 10:

Add a function named length in the file move.py.

20. Go to https://docs.python.org and click the modules link in the upper right corner. Find at
least two built-in modules that interest you, and summarize what functions they provide.

See also https://github.com/vinta/awesome-python.

62

https://docs.python.org

	Title Page
	Contents
	Introduction to Python
	Arithmetic Expressions
	Basic Data Structures
	Conditions and Logic
	Loops and Iteration
	Defining Functions
	Lists and Strings
	Importing Modules
	Nested Structures
	File Input/Output
	Visualizing Data
	Defining Classes
	Extending Classes
	Recursive Functions
	Role Cards
	Meta Activities
	Honor Code Case Studies

