
Lists and Strings
Many interesting problems involve manipulating sequences of data. You’ve learned about lists
and strings before, but this activity provides a more in-depth look at what they can do.

Content Learning Objectives

After completing this activity, students should be able to:

• Name four methods that lists provide, and describe what each method does.

• Explain the syntax and meaning of slice operations, with and without indexes.

• Name four methods that strings provide, and describe what each method does.

Process Skill Goals

During the activity, students should make progress toward:

• Gaining insight about data structures from many examples. (Information Processing)

Facilitation Notes

This activity is slightly longer than usual, so it’s important that the managers keep track of time
and make sure teams don’t fall behind. Remind students not to give too much thought to the
shell output when completing the tables in each model.

Questions #5 and #6 in Model 1 are good for reporting out. Call on at least 2–3 teams to share
different perspectives on these answers. Ask teams to explain what else they learned about
these functions, if time permits.

When reporting out Model 2, make a connection between the slice [m:n] and the range(m, n).
In both cases, the range includes m but not n. Briefly explain that slices may have a third argu-
ment, just like the range function. Just for fun, show an example of reversing a list or string
using the slice [::-1].

On Model 3, make sure students notice the type of dna vs the type of dna[0]. When discussing
question #20, challenge students to describe (hypothetically) what a replace method might
look like for lists, and how it would be different than replace for strings. Report out for other
questions as time permits.

Copyright © 2019 T. Shepherd, C. Mayfield, and H. Hu. This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

49



Model 1 Working with Lists

Recall that a variable can hold multiple values in the form of a list. The values are separated by
commas and wrapped in square brackets.

Lists have methods (built-in functions) that can be called using dot notation. For example, to
add a new element to the end of a list, we can use the append method.

Python code Shell output

rolls = [4, 6, 6, 2, 6]

len(rolls) 5

print(rolls[5]) IndexError: list index out of range

rolls.append(1)

print(rolls) [4, 6, 6, 2, 6, 1]

print(rolls[5]) 1

lucky.append(1) NameError: name ’lucky’ is not defined

lucky = []

print(lucky[0]) IndexError: list index out of range

lucky.append(5)

print(lucky) [5]

print(lucky[0]) 5

rolls.count(6) 3

rolls.remove(6)

print(rolls) [4, 6, 2, 6, 1]

help(rolls.remove) remove first occurrence of value

help(rolls) Help on list object (multiple pages)

Questions (15 min) Start time:

1. What is the result of calling the append method on a list?

The value gets added to the end of the list. Nothing is returned.

2. What must be defined prior to using a method like append?

The list itself; lucky.append(5) is an error if lucky is not defined.

50



3. Explain why two lines in Model 1 caused an IndexError.

In both cases, we asked for an index that was out of range. If the length of an index is n, the
highest index is n − 1.

4. What is the result of calling the remove method on a list?

It removes the first occurrence of a value. The list changes as a result of this method.

5. Based on the help output, name several list methods not shown in Model 1. Do not include
methods that begin and end with two underscores (e.g., __add__).

Answers may include: clear, copy, extend, index, insert, pop, reverse, sort.

6. Give one example of a list method that requires an argument and one that does not.

Methods that require arguments: append, count, extend, index, insert, remove. Methods that
do not: clear, copy, pop, reverse, sort.

7. Describe the similarities and differences between using a list method like append and Python
built-in functions like print.

Both use parentheses and take arguments. The list methods come after the dot operator, and
the built-it functions surround the list itself.

8. Complete the function below (two lines are missing). It should prompt the user for numbers
and build a list by adding one number at a time to the end of the list. The loop terminates when
the user inputs the number 0.

def input_numbers():

x = 1

numbers = []

while x != 0:

x = int(input("Enter the next number: "))

numbers.append(x)

return numbers

51



Model 2 Indexing and Slicing

A string is a sequence of characters in single quotes (') or double quotes ("). Depending on
the application, we can treat a string as a single value (e.g., dna), or we can access individual
characters using square brackets (e.g., dna[0]). We can also use slice notation (e.g., dna[4:8])
to refer to a range of characters. In fact, all types of sequences (including list and tuple)
support indexing and slicing.

Python code Shell output

dna = 'CTGACGACTT'

dna[5] ’G’

dna[10] IndexError: string index out of range

len(dna) 10

dna[:5] ’CTGAC’

dna[5:] ’GACTT’

dna[5:10] ’GACTT’

triplet = dna[2:5]

print(triplet) GAC

dna[-5] ’G’

dna[-10] ’C’

dna[:-5] ’CTGAC’

dna[-5:] ’GACTT’

triplet = dna[-4:-1]

print(triplet) ’ACT’

Questions (15 min) Start time:

9. What is the positive index of each character in the dna string? Check your answers above.

Character: C T G A C G A C T T

Index: 0 1 2 3 4 5 6 7 8 9

10. What is the negative index of each character in the dna string? Check your answers above.

Character: C T G A C G A C T T

Index: -10 -9 -8 -7 -6 -5 -4 -3 -2 -1

52



11. Based on the previous questions, what are dna[2] and dna[-2]? Explain your answers.

They are G and T, respectively. Index 2 means to the third from the left, and index -2 means the
second from the right.

12. Explain the IndexError you observed. What is the range of indexes for the dna string?

Because the length of the string is 10, the indexes range from 0 to 9. Therefore, dna[10] is out
of range.

13. Consider the notation of the operator [m:n] for slicing the string.

a) Is the value at m the same as the corresponding index value (i.e., dna[m])? If not, describe
what it means. Yes; m is the first character in the slice.

b) Is the value at n the same as the corresponding index value (i.e., dna[n])? If not, describe
what it means. No; n is the index after the last character.

c) Explain what it means when only a single number is referenced when creating a slice,
such as [m:] or [:n]. The slice [m:] means “from the index m to the end”. The slice [:n]

means “from the beginning to the index just before n” (i.e., the first n characters).

14. What is the simplest way to get the first three characters of dna? What is the simplest way
to get the last three characters?

Based on the previous question, we know that dna[:3] gets the first three characters. To get the
last three, we use dna[-3:].

15. Write a Python expression that slices 'GACT' from dna using positive indexes. Then write
another expression that slices the same string using negative indexes.

dna[5:9] dna[-5:-1]

16. Write a Python assignment statement that uses the len function to assign the last letter of
dna to the variable last.

last = dna[len(dna) - 1]

17. Write a Python assignment statement that uses a negative index to assign the last letter of
dna to the variable last.

last = dna[-1]

53



Model 3 Common String Methods

Like lists, strings have methods (built-in functions) that can be called using dot notation. See
https://docs.python.org/3/library/stdtypes.html#string-methods for more details.

Python code Shell output

dna = 'CTGACGACTT'

dna.lower() ’ctgacgactt’

print(dna) CTGACGACTT

lowercase = dna.lower()

print(lowercase) ctgacgactt

dnalist = list(dna)

print(dnalist) [’C’, ’T’, ’G’, ’A’, ’C’, ’G’, ’A’, ’C’, ’T’, ’T’]

dnalist.reverse()

print(dnalist) [’T’, ’T’, ’C’, ’A’, ’G’, ’C’, ’A’, ’G’, ’T’, ’C’]

type(dna) <class ’str’>

dna = dna.split('A')

print(dna) [’CTG’, ’CG’, ’CTT’]

type(dna) <class ’list’>

dna.replace('C', 'g') AttributeError: ’list’ object has no attribute ’replace’

print(dna[0]) CTG

type(dna[0]) <class ’str’>

dna[0].replace('C', 'g') ’gTG’

print(dna) [’CTG’, ’CG’, ’CTT’]

Questions (15 min) Start time:

18. Does the lower method change the contents of the dna string? Justify your answer.

No, it does not. The next line of code prints dna, which is unchanged.

19. Describe the list function—what does list(dna) return in Model 3?

It returns a list of the individual characters. Each element of the list is a string of length 1. (Note
that Python does not have a character data type.)

54

https://docs.python.org/3/library/stdtypes.html#string-methods


20. Why is it possible to call the replace method on dna[0] but not dna?

The list data type does not include a replace method. However, strings allow you to “find and
replace” any text.

21. Name several other string methods not shown in Model 3. (Read the documentation.)

There are dozens of string methods; the model only uses lower, split, and replace.

22. Consider the application of a method on a variable:

a) Does a string variable change after applying a method? Provide justification.

No it doesn’t; neither lower nor replace modify the string.

b) Does a list variable change after applying a method? Provide justification.

It might; for example, the reverse method changes the list.

c) Identify the data type that is immutable (i.e., the value never changes).

String

23. Write a single statement to change the final contents of dna to ['CTG', 'cc', 'CTT'].
Confirm that your code works in a Python Shell.

dna[1] = 'cc'

24. Why do you think Python has a replace method for strings but not for lists?

Answers may vary. One reason might be that lists are more complex than strings: they can store
any type of data, not just characters. Another reason might be that there are fewer applications
of replacing data in lists than patterns in text.

55



56


	Title Page
	Contents
	Introduction to Python
	Arithmetic Expressions
	Basic Data Structures
	Conditions and Logic
	Loops and Iteration
	Defining Functions
	Lists and Strings
	Importing Modules
	Nested Structures
	File Input/Output
	Visualizing Data
	Defining Classes
	Extending Classes
	Recursive Functions
	Role Cards
	Meta Activities
	Honor Code Case Studies

