
Basic Data Structures
Python has a wide variety of built-in types for storing anything from numbers and text (e.g.,
int, float, str) to common data structures (e.g., list, tuple, dict).

Content Learning Objectives

After completing this activity, students should be able to:

• Reference a specific element of a sequence by an index.

• Compare and contrast numeric and sequence data types.

• Create a dictionary of strings and look up values by key.

Process Skill Goals

During the activity, students should make progress toward:

• Providing feedback on how well other team members are working. (Teamwork)

Facilitation Notes

All three models involve completing tables interactively using a Python Shell. Encourage teams
to complete them as quickly as possible, without thinking about individual results. The ques-
tions are designed for students to go back and interpret the results as a whole. If they spend
too long discussing the table, they won’t finish the questions.

The questions on Model 1 are short and may not lead to much whole-class discussion. Have
neighboring teams compare answers and discuss any differences that arise. Some students may
be aware of negative indexes, but you may want to avoid them at this point. A future activity
will explore more advanced topics with indexing and slicing.

On Model 2, students might ask when to use a tuple instead of a list. Avoid long discussions
about mutability, and instead focus on everyday examples. Some data are inherently lists: class
rosters, grocery lists, etc. Other data are inherently tuples: coordinates, dates, etc. Have at least
2–3 teams report out #16 and encourage different ways of summarizing the main ideas.

When teams get to Model 3, remind the managers to keep track of time. Reserve some time at
the end to report out #20 and #23. Discuss the similarities and differences of lists, tuples, and
dictionaries. If time permits, have teams brainstorm everyday examples of each data type.

Copyright © 2019 T. Shepherd, C. Mayfield, and H. Hu. This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

17



Model 1 Lists

A variable can hold multiple values in the form of a list. The values are separated by commas
and wrapped in square brackets. For example:

primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]

Each element of the list can be referenced by an index, which is the sequential position starting
at 0. For example, primes[4] is 11.

index 0 1 2 3 4 5 6 7 8 9

value 2 3 5 7 11 13 17 19 23 29

Do not type anything yet! Read the questions first!

Python code Shell output

odd = [1, 3, 5, 7]

odd [1, 3, 5, 7]

odd[2] 5

odd[4] IndexError

len(odd) 4

number = odd[1]

number 3

odd[1] = 2

odd [1, 2, 5, 7]

number 3

Questions (10 min) Start time:

1. What is the index of the second element of primes? What is the value at that index?

The index is 1. The value is 3.

2. How does the index number compare to the position of the element?

One less — index zero is the first element.

18



3. Type each line of code in a Python Shell and write the corresponding output in the space
above. If an error occurs, write what type of error. Place an asterisk (*) next to any output for
which you were surprised.

4. How did you reference the value of the 3rd element of odd?

odd[2]

5. What did the output of the len() function tell you about the list?

The length of the list

6. The output of Model 1 displayed an error. Explain the reason for the error.

It says “IndexError: list index out of range”. The maximum index is 3 (i.e., length - 1), so 4 is
too big.

7. Write a statement that assigns a list of three integers to the variable run.

run = [1, 2, 3]

8. Write a statement that assigns the value 100 to the last element of run.

run[2] = 100

9. Write a statement that assigns the first value of run to a variable named first.

first = run[0]

19



Model 2 Sequences

Lists and strings are examples of sequence types. Complete the table below to explore how
sequences work.

Python code Shell output

seq1 = "one two"

type(seq1) <class ’str’>

len(seq1) 7

seq1[1] ’n’

seq1[1] = '1' TypeError: ’str’ object does not support item assignment

seq2 = "one", "two"

type(seq2) <class ’tuple’>

len(seq2) 2

seq2[1] ’two’

seq2[1] = '1' TypeError: ’tuple’ object does not support item assignment

seq3 = ["one", "two"]

type(seq3) <class ’list’>

seq3[1] ’two’

seq3[1] = 1

seq4 = ("one", 1)

type(seq4) <class ’tuple’>

number = 12345

number[3] TypeError: ’int’ object is not subscriptable

Questions (15 min) Start time:

10. How does a sequence type differ from a number? (See the last row of the table.)

The value of each element of a sequence is accessible by an index

11. What are the names of the three sequence types introduced in Model 2?

list, string, and tuple

20



12. How does the syntax of creating a tuple differ from creating a list?

Tuples use parentheses, and lists use square brackets.

13. Is there more than one way (syntax) to create a tuple? Justify your answer.

Yes, the parentheses are optional as long as you use the comma operator. For example, the
variable seq2 is a tuple.

14. Which sequence types allow their elements to be changed? Which do not?

Only lists allow elements to be changed; strings and tuples do not support assignment.

15. Is it possible to store values of different types in a sequence? If yes, give an example from
the table; if no, explain why not.

Yes; the seq4 tuple ("one", 1) stores both a string and an integer.

16. Summarize the difference between lists and tuples. How do they look differently, and how
do they work differently?

Tuples use parentheses, but lists use square brackets. Tuples cannot be modified, but lists can
be modified.

21



Model 3 Dictionaries

In Python, a dictionary stores “key: value” pairs. The pairs are separated by commas and
wrapped in curly braces. For example:

elements = {'C': 'carbon', 'H': 'hydrogen', 'O': 'oxygen', 'N': 'nitrogen'}

Key Value

'C' 'carbon'

'H' 'hydrogen'

'O' 'oxygen'

'N' 'nitrogen'

In contrast to sequence types, a dictionary is a mapping type. Values are referenced by keys,
rather than by indexes.

Type the elements dictionary above into a Python Shell, and then complete the following table
to explore how it works.

Python code Shell output

type(elements) <class ’dict’>

elements.keys() dict_keys([’C’, ’H’, ’O’, ’N’])

elements.values() dict_values([’carbon’, ’hydrogen’, ’oxygen’, ’nitrogen’])

elements['C'] ’carbon’

atom = 'N'

elements[atom] ’nitrogen’

elements[N] NameError: name ’N’ is not defined

elements['nitrogen'] KeyError: ’nitrogen’

elements[1] KeyError: 1

len(elements) 4

elements['B'] = 'Boron'

elements.items() dict_items([(’C’, ’carbon’), (’H’, ’hydrogen’), ...])

Questions (20 min) Start time:

17. List all the keys stored in the elements dictionary after completing the table.

The keys are 'C', 'H', 'N', 'B', and 'O'.

22



18. What is the data type of the keys in the elements dictionary?

The keys are all strings. (Note: there is no “char” type in Python.)

19. Explain the reason for the error after entering each of the following lines:

a) elements[N] The letter N is treated as a variable name, and it’s undefined.

b) elements['nitrogen'] The string "nitrogen" is not one of the keys.

c) elements[1] The integer 1 is also not a key, and there are no indexes.

20. Ignoring the ”dict_items()” part, describe the contents and type of data returned by the
items() method.

It appears to return a list of tuples (of key-value pairs). In reality, the function returns a “view”
of the dictionary. See https://docs.python.org/3/library/stdtypes.html#dict-views.

21. Write a Python expression that creates a dictionary for the seven days of the week, i.e.,
Sun=1, Mon=2, Tue=3, etc. Assign the dictionary to the variable dow.

dow = {'Sun': 1, 'Mon': 2, 'Tue': 3, 'Wed': 4, 'Thu': 5, 'Fri': 6, 'Sat': 7}

22. If you assign two different values to the same key (i.e., two assignment statements with
one value each), which value is stored in the dictionary? Justify your answer with an example.

If you were to assign dow['Sun'] = 8 followed by dow['Sun'] = 0, then 0 would replace the
previous value.

23. Another way to store the data in Model 3 is to use two lists:

keys = ['C', 'H', 'O', 'N']

vals = ['carbon', 'hydrogen', 'oxygen', 'nitrogen']

What is a disadvantage of this approach? Explain your reasoning.

It’s more difficult to insert new items: you have to write two assignment statements instead of
one. It’s even more difficult to update items: you have to determine the index of the key and
replace the corresponding value in the other list.

23

https://docs.python.org/3/library/stdtypes.html#dict-views


24


	Title Page
	Contents
	Introduction to Python
	Arithmetic Expressions
	Basic Data Structures
	Conditions and Logic
	Loops and Iteration
	Defining Functions
	Lists and Strings
	Importing Modules
	Nested Structures
	File Input/Output
	Visualizing Data
	Defining Classes
	Extending Classes
	Recursive Functions
	Role Cards
	Meta Activities
	Honor Code Case Studies

