
Arithmetic Expressions
Now that you’ve written a few programs, let’s take a step back and discuss how to do arith-
metic. The behavior of Python operators (+, -, *, /) depends on what type of data you have.

Content Learning Objectives

After completing this activity, students should be able to:

• Execute mathematical expressions similar to a calculator.

• Describe the function of the three Python division operators.

• Explain differences between integer and floating-point data.

Process Skill Goals

During the activity, students should make progress toward:

• Recognizing mathematical operations based on tables. (Information Processing)

Facilitation Notes

Help students get started quickly on the table in Model 1, so that they will have enough time to
answer the questions. When reporting out, ask teams what surprises they had and what they
learned from interacting with the code using a Shell.

If you are using Thonny (see Activity 1), now is a good opportunity to explain the “Assistant”
that opens when errors occur. It may also be helpful to visualize assignment statements using
the debugger. Thonny will even step into expressions, showing the order of operations. Have
students check their work as you demonstrate the order and result of each expression.

On Model 2, report out after #15. Introduce the terms modulo operation (and/or modulus)
and remainder operator. Explain that “x % y” can be pronounced “x mod y”. #16 refers to the
instructor hypothetically giving mints to teams to divide among themselves. Consider bringing
real mints to build rapport with the class. Or you can use other small objects, like paperclips.

During Model 3, be aware of the difference between **, pow, and math.pow. The ** operator and
built-in pow function preserve the data type of the operands: 5 ** 2 is 25. In contrast, math.pow
always uses floating-point arithmetic: math.pow(5, 2) is 25.0. If students use math.pow on #24,
they’ll get the incorrect answer if it overflows. You can either warn students about math.pow in
advance, or have students discover this issue when reporting out.

Copyright © 2019 T. Shepherd, C. Mayfield, and H. Hu. This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

9

Model 1 Python Calculator

In a Python Shell window, “>>>” is a prompt indicating that the interpreter is waiting for input.
All text entered after the prompt will be executed immediately as Python code.

If you type a Python expression (code that results in a value) after the prompt, Python will
show the value of that expression, similar to a calculator. You can use Python’s math module to
perform more complex mathematical operations like logarithms and trigonometric operations.

Do not type anything yet! Read the questions first!

Python code Predicted output Actual output

2 + 3 5

3 * 4 + 2 14

3 * 4 + 2.0 14.0

3(4 + 2) TypeError

3 * (4 + 2) 18

5 / 10 0.5

5 / 10.0 0.5

5 / 9 0.5555556

2 ** 4 16

abs(-2) ** 4 16

math.pow(2, 4) NameError

import math

math.pow(2, 4) 1.0

sqrt(4) NameError

math.sqrt(4) 2.0

math.cos(0) 1.0

math.pi 3.141592653589793

math.sin(math.pi / 2) 1.0

Questions (15 min) Start time:

1. In the middle “Predicted output” column, write what value you expect will be displayed,
based on your team’s experience using a calculator. If there are any lines you are not confident
about, place an asterisk next to your predicted output.

10

2. Open a Python Shell on your computer. Type each Python expression at the prompt, one
line at a time, and write the corresponding Python output in the third column above. If an error
occurs, write what type of error it was (i.e., the first word of the last line of the error message).

3. What does the ** operator do?

It raises a number to a power.

4. Based on the Python code in Model 1, identify four examples of:

a) mathematical operator +, *, /, **

b) mathematical function abs, math.pow, math.sqrt, math.cos, math.sin

5. For addition and multiplication to produce an output with a decimal value, what type of
number must be part of the input? Provide justification for your team’s answer.

At least one of the numbers must have a decimal value. For example, 3 * 4 + 2 is the integer
value 14, but 3 * 4 + 2.0 is the decimal value 14.0.

6. Does division follow the same rule as in #5? Provide justification for your team’s answer.

No; when dividing integers, the result is always a decimal number. The same is true even when
there is no remainder, i.e., 8 / 4 is 2.0.

7. The output of Model 1 displayed three different errors. Explain the reason for each:

a) TypeError need to use * to multiply 1

b) 1st NameError need to import math

c) 2nd NameError need "math." before function

8. Identify two differences between using a Python built-in function (e.g., abs) and a function
from the math module.

Need to “import math” first, and all function names start with “math.” before the function.

1When students enter 3(4 + 2) the interpreter says, “TypeError: ’int’ object is not callable”. In other words,
the integer 3 is not a function and can’t be called.

11

Model 2 Dividing Numbers

Table A

9 / 4 evaluates to 2.25

10 / 4 evaluates to 2.5

11 / 4 evaluates to 2.75

12 / 4 evaluates to 3.0

13 / 4 evaluates to 3.25

14 / 4 evaluates to 3.5

15 / 4 evaluates to 3.75

16 / 4 evaluates to 4.0

Table B

9 // 4 evaluates to 2

10 // 4 evaluates to 2

11 // 4 evaluates to 2

12 // 4 evaluates to 3

13 // 4 evaluates to 3

14 // 4 evaluates to 3

15 // 4 evaluates to 3

16 // 4 evaluates to 4

Table C

9 % 4 evaluates to 1

10 % 4 evaluates to 2

11 % 4 evaluates to 3

12 % 4 evaluates to 0

13 % 4 evaluates to 1

14 % 4 evaluates to 2

15 % 4 evaluates to 3

16 % 4 evaluates to 0

Questions (15 min) Start time:

9. For each operator in Model 2, identify the symbol and describe the type of numerical result.

/ decimal // integer % integer

Note that Python refers to decimal numbers as “floating-point” numbers.

10. If the result of the / operator were rounded to the nearest integer, would this be the same
as the result of the // operator? Explain how the results in Table A compare to Table B.

No, the pattern is off by two rows. The 0.5 and 0.75 values would round up, but in the second
table they round down.

11. If the table included more rows, list all numbers // 4 would evaluate to 2 and all the
numbers // 4 would evaluate to 4.

8, 9, 10, and 11 evaluate to 2.
16, 17, 18, and 19 evaluate to 4.

12. Based on the results of Table C, propose another number % 4 evaluates to 0, and explain
what all these numbers have in common.

Other numbers include 0, 4, 8, 20, 24. All of these numbers are multiples of four.

12

13. Consider the expressions in Table C that evaluate to 1. How do the left operands in these
expressions (i.e., 9, 13) differ from those that evaluate to 0?

They each differ by one; they are one higher than a multiple of four.

14. Describe the reason for the repeated sequence of numbers (0, 1, 2, 3) for the result of % 4.

The difference (remainder) increases by one until the number is exactly divisible by 4.

15. Recall how you learned to do long division in elementary school. Finish solving for 79 ÷ 5
below. Which part of the answer is 79 // 5, and which part is 79 % 5?

We first bring the 9 down, then 5 goes into 29 five times, and so we subtract 25. The final answer
is 15 remainder 4. So 79 // 5 is 15, and 79 % 5 is 4.

16. Imagine that you are given candy mints to divide evenly among your team members.

a) If your team receives 11 mints, how many mints would each student get, and how many
are left over? Write a Python expression to compute each result.

11 / 3 is 3 and 11 % 3 is 2 or 11/ 4 is 2 and 11 % 4 is 3

b) If your team receives 2 mints, how many mints would each student get, and how many
are left over? Write a Python expression to computes this result.

2 / 3 is 0 and 2 % 3 is 2 or 2 / 4 is 0 and 2 % 4 is 2

17. Python has three division operators: “floor division”, “remainder”, and “true division”.
Which operator (symbol) corresponds to each name?

// is floor division, because it throws away the decimal place (i.e., it ”floors” the result). % is
the remainder operator, which is sometimes called the modulo operator. / is true division,
because it gives you the mathematically correct answer.

13

Model 3 Integers and Floats

Every value in Python has a data type which determines what can be done with the data. Enter
the following code, one line at a time, into a Python Shell. Record the output for each line (if
any) in the second column.

Python code Shell output

integer = 3

type(integer) <class ’int’>

type("integer") <class ’str’>

pi = 3.1415

type(pi) <class ’float’>

word = str(pi)

word ’3.1415’

number = float(word)

print(word * 2) 3.14153.1415

print(number * 2) 6.283

print(word + 2) TypeError

print(number + 2) 5.14159

euler = 2.7182

int(euler) 2

round(euler) 3

Questions (15 min) Start time:

18. What is the data type (int, float, or str) of the following values? (Note: if you’re unsure,
use the type function in a Python Shell.)

a) pi float

b) integer int

c) word str

d) number float

19. List the function calls that convert a value to a new data type.

The calls are: str(pi), float(word), and int(euler). Note there is a function named after each
data type.

14

20. How does the behavior of the operators (+ and *) depend on the data type?

The + operator appends text, and the * operator copies text.

21. What is the difference between the int function and the round function?

The int function truncates the value, throwing away the decimal places. The round function
rounds the value up or down to the nearest integer.

22. What is the value of 3 + 3 + 3? What is the value of .3 + .3 + .3? If you enter these
expressions into a Python Shell, what do you notice about the results?

Adding three 3’s is 9, but adding three .3’s is 0.8999999999999999. The answer is slightly off
when using floating-point numbers.

23. In order to store a number with 100% accuracy, what data type is required? How might
you precisely represent a bank account balance of $123.45?

Integers should be used to avoid floating-point errors. Simply multiply the balance by 100 when
storing, and divide by 100 when displaying. $123.45 would be represented as 12345 cents.

24. Try calculating a very large integer in a Python Shell, for example, 123456. Is there a limit to
the integers that Python can handle?

There is no limit, other than the computer’s memory size. But the larger the integer, the longer
it takes to compute it.

25. Try calculating a very large floating-point number in a Python Shell, for example, 123.0465.
Is there a limit to the floating-point numbers that Python can handle?

Yes; at some point the numbers get too big. For example, 123.0 ** 456 results with an Over-
flowError: ’Numerical result out of range’.

26. Summarize the difference between the numeric data types (int and float). What are their
pros and cons?

Integers have unlimited range and precision, but floating-point numbers are an approximation.
(Note: float in Python is usually implemented using double in C.)

15

16

	Title Page
	Contents
	Introduction to Python
	Arithmetic Expressions
	Basic Data Structures
	Conditions and Logic
	Loops and Iteration
	Defining Functions
	Lists and Strings
	Importing Modules
	Nested Structures
	File Input/Output
	Visualizing Data
	Defining Classes
	Extending Classes
	Recursive Functions
	Role Cards
	Meta Activities
	Honor Code Case Studies

