
Introduction to Python
In this course, you will work in teams of 3–4 students to learn new concepts. This activity will
introduce you to the process. We’ll take a first look at variables, assignment, and input/output.

Content Learning Objectives

After completing this activity, students should be able to:

• Describe differences between program and output text.

• Identify and execute Python functions for input/output.

• Write assignment statements and use assigned variables.

Process Skill Goals

During the activity, students should make progress toward:

• Leveraging prior knowledge and experience of other students. (Teamwork)

Facilitation Notes

During the first 5–10 minutes, help teams get started by encouraging discussion and collabo-
ration. Make sure that each team is able to find Thonny (or other development environment)
on their computer. If multiple interpreters are installed (e.g., Python 2 and Python 3), double
check that students run the correct version.

Keep a close watch on the first few questions, and encourage teams that make mistakes to go
back and rework them (without giving the answer). Once most teams have successfully run
the program in Model 1, type or open the same code on the instructor’s machine. Report out
questions #2 and #4, using the projected program as a visual aid.

On Model 2, make sure that teams use the Shell window (some teams might accidentally use
the Editor window). Once most teams have started working on the table, you might want to
demonstrate on the projector how the Shell works. Report out the last three questions, and
discuss how values from user input are different from literal values in the source code.

Before students begin Model 3, demonstrate how to read error messages. They do not need to
write down the entire error message, but they should identify the type of error (e.g., NameError,
SyntaxError). It may help to make several mistakes on the projector and show students how to
find the first word at the end of the error message.

At the end of the activity, review how variables work in the Shell. Demonstrate and explain the
following lines: x = 10, x (by itself), x + 1, x (by itself), x = x + 1, and x (by itself).

Copyright © 2019 T. Shepherd, C. Mayfield, and H. Hu. This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

1



Model 1 Getting Started with Thonny

Thonny is an integrated development environment (IDE) for Python designed for learning and
teaching programming. It is freely available at https://thonny.org/.

Do not run Thonny yet! Answer the questions first!

Questions (15 min) Start time:

1. Based on the screenshot in Model 1:

a) where is the Shell window? the second / bottom half

b) where is the Editor window? the first / top half

c) what is the name of the file in the Editor? hello.py

d) what is the directory where this file is located? Desktop

2

https://thonny.org/


2. Identify the number of lines corresponding to:

a) the program (in the Editor)
The source file contains six total lines (the 7th line is blank and doesn’t count)

b) the output of the program
The program displays three lines (“Welcome...”, “What’s...”, and “Monty...”).

3. What is the symbol at the start of a line of program text not displayed as output?

The pound sign: #

4. Consider the three program lines (in the Editor) that are not displayed as output. Describe
what might be the purpose of:

a) a comment line (starts with a pound sign: #)
They are used to describe the purpose and/or behavior of the code.

b) a blank line
They make the code easier to read.

Now open Thonny on your computer, type the code shown in Model 1, save the file as hello.py, and
run the program. Ask for help if you get stuck!

5. What was required before the third line of the program output was displayed?

An answer needed to be entered (typed).

6. In the Shell window, what is the color of:

a) the program’s output? black

b) the user’s input? blue

7. Based on your experience so far, what is the difference between the text in the Editor window
and the text in the Shell window?

The editor contains a series of statements or commands which make up the program. The shell
(or terminal) contains the program output text and an interface for program input.

3



8. Describe what appears to be the purpose of each line of Python code in the Editor window.

a) line 1: a comment to describe the purpose of the code

b) line 2: displays a message

c) line 3: a blank line to make the code easier to read

d) line 4: a comment to describe the purpose of the code

e) line 5: gets input from the user

f) line 6: displays the final output

Model 2 Python Built-In Functions

You can use built-in Python functions to perform specific operations. Sometimes a function
will require information (referred to as arguments) to perform its operation. A function will
also return a result after the operation.

To call (or use) a Python function:

• You must include parentheses after the function’s name (e.g., print() prints a blank line).

• If the function takes one or more arguments to perform its operation, you must put that
information in the parentheses (e.g., print("Hello, world!") prints a message).

Do not type anything yet! Read the questions first!

Python code Shell output

input("enter the mass in grams: ") enter the mass in grams: 100

mass = input("enter another mass in grams: ") enter another mass in grams: 10

mass ’10’

unit = input("enter the units for mass: ") enter the units for mass: g

print(mass, unit) 10 g

print(mass / 2) TypeError

ten = 10

print(ten / 2) 5.0

abs(-1) 1

abs(-1 * ten) 10

4



Questions (15 min) Start time:

9. List the names of the three functions used in Model 2.

input, print, abs

10. What are the arguments of the first use of the print function? mass, unit

11. Type each line of code in a Python Shell, one line at a time, and write the corresponding
output (if observed) in the right column of the table. If an error occurs, write what type of error
it was (i.e., the first word of the last line of the error message).

Place an asterisk (*) next to any output for which you were surprised, and note what was unex-
pected about the output. Don’t worry yet about understanding any strange output you may see;
we will discuss what it all means by the end of class.

12. Which function delayed execution until additional input was entered?

The input function.

13. Which term, user or programmer, best defines the role of the person who entered the
additional input? Explain.

User is a better term; programs are ultimately written to be used by non-programmers.

14. Based on the Shell output, what does the word mass represent, and how did it get its value?

(Answers may vary) Its value is 10, which the user entered as input.

15. What does the word ten represent, and how did it get its value?

Its value is 10 based on the statement “ten = 10”.

16. Do the values of mass and ten both represent a number? Explain why or why not.

Although they both appear to represent a numerical value, mass divided by 2 gives an error,
while five divided by 2 gives the expected numerical outcome.

5



Model 3 Variables and Assignment

In programming, an assignment statement saves a value to a variable. The variable “is set to”
the value after the = operator. Selecting concise yet descriptive variable names is considered
good programming style and will make your programs easier to read.

Do not type anything yet! Read the questions first!

Python code Shell output

data = 12

data 12

Data NameError

Data = 34

data 12

Data 34

my data = 56 SyntaxError

my_data = 78

3data = "hello" SyntaxError

data3 = "world"

data3 = hello NameError

hot = 273 + 100

273 + 100 = hot SyntaxError

hot 373

Hot + 100 NameError

hot - 100 273

Questions (15 min) Start time:

17. Based on the information and Python code in Model 3, give an example representing each
of the following:

a) an assignment statement data = 12

b) the variable being assigned data

c) the assignment operator =

d) the value of the variable immediately after the assignment 12

6



18. Similar to Model 2, type each line of code in a Python Shell and write the corresponding
output in the space above. If an error occurs, write what type of error. Place an asterisk (*) next
to any output for which you were surprised.

19. Circle each successful assignment statement in Model 3. How many are there? 5

20. What is the observed output of a successful assignment statement?

There is no error message (there is no output at all).

21. After the successful execution of an assignment statement, how can you confirm the value
of this variable?

You can type back the variable name to see its current value.

22. For each assignment statement that executed without an error, write the corresponding
variable name.

data, Data, my_data, data3, hot
(see the lines with no output)

23. Based on the Model 3 output, indicate whether each statement below is true or false.

a) Variable names in Python can start with a number. false

b) Variable names in Python must start with a lower-case letter. false

c) Variable names in Python may not include spaces. true

d) Variable names in Python are case-sensitive. true

24. Each of the following assignment statements has an error. Write a valid line of Python code
that corrects the assignment statement. Double-check your code using a computer.

a) 3 + 4 = answer answer = 3 + 4

b) oh well = 3 + 4 oh_well = 3 + 4

c) 2x = 7 x2 = 7

7



25. Predict the value of the variable hot after executing all lines of code in Model 3. Then test
your prediction on a computer, and explain the result.

The value is 373, because hot was only assigned one time. The other lines did not change the
value of hot.

26. Write a line of Python code to assign the current value of hot to the variable cold. Show
output that confirms that you have done this correctly, and explain the code.

The correct line is cold = hot. To verify the result, simply type cold. The assignment operation
reads from right to left.

8


	Title Page
	Contents
	Introduction to Python
	Arithmetic Expressions
	Basic Data Structures
	Conditions and Logic
	Loops and Iteration
	Defining Functions
	Lists and Strings
	Importing Modules
	Nested Structures
	File Input/Output
	Visualizing Data
	Defining Classes
	Extending Classes
	Recursive Functions
	Role Cards
	Meta Activities
	Honor Code Case Studies

