Extending Classes

A major benefit of object-oriented programming is the ability to inherit classes and eliminate
duplicate code. Inheritance allows you to define a new class based on an existing class.

Content Learning Objectives

After completing this activity, students should be able to:

* Read and interpret UML class diagrams for an existing code base.
¢ Evaluate pros and cons for designs with multiple similar classes.

¢ Define inheritance and demonstrate how to extend a base class.

Process Skill Goals

During the activity, students should make progress toward:

¢ Working with all team members to reach consensus on hard questions. (Teamwork)

Copyright © 2019 M. Stewart and C. Mayfield. This work is licensed under a Creative
Commons Attribution-NonCommercial-ShareAlike 4.0 International License.




Model1 UML Class Diagrams

Unified Modeling Language (UML) provides a standard way of visualizing how programs are
designed (http:/ /www.uml.org/what-is-uml.htm). For example, a class diagram is a graphical
summary of the attributes and methods of a class.

Cow: Cow

_init__(self): posiFion : ‘Fuple
respired : int
stomach : list

self.position = (0, 0)
self .respired = 0

self.stomach = [] _if}it_()
eat(item : str)

eat (self, item): il;ggif;(e%elta : tuple)

item == ''grass": speak()
self.stomach.append(item)
"ate " + item

"This herbivore doesn't eat " + item
move(self, delta):
self.position = (self.position[0] + deltalO],
self .position[1] + deltal[l])
"This quadruped walked to " + str(self.position)
respire(self):
self .respired += 1
"This cow respired through its nostrils."
speak (self):

Ilmooll

Questions (15 min) Start time:

1. Draw an arrow from each name in the diagram to where it’s defined in the code.

2. What are the attributes of Cow? What are the methods of Cow?

3. What is listed in each section of the UML class diagram?

a) Top section: b) Middle section: ¢) Bottom section:


http://www.uml.org/what-is-uml.htm

4. Consider the following class diagrams:

Horse .
Cow Lion

position : tuple f:szgzg ?11113 le position : tuple

respired : int X respired : int
stofnach s list stomach : list stofnach s list
_init_ ()

eat(item : str)
move(delta : tuple)

Pig

position : tuple
respired : int
stomach : list

__init_ ()
eat(item : str)
move(delta : tuple)

_init_ ()
eat(item : str)
move(delta : tuple)

__init_ ()
eat(item : str)
move(delta : tuple)

. nuzzle(position : tuple) . respire()
respllie() respire() resp:lze() speak()
speak() speak() speak() wallow()

a) What attributes do the classes have in common?

b) What methods do the classes have in common?

¢) What methods are unique to a particular class?

5. Quickly examine the source code for each of the classes to identify similarities and differ-
ences. Write one or two words in each table cell to summarize your findings.

Cow Horse Lion Pig
eat grass
move walked
nuzzle N/A
respire nostrils
speak moo
wallow N/A

6. Consider what it would take to add a new method named sleep to each of the classes.

a) Describe the process of adding the same method to each source file.

b) If a mistake is found later on, how would you correct the method?

c) What problems do you see with this approach as more classes are added?



Model 2 Single-Class Approach

Given that the classes from Model 1 are similar, we could try combining them into a single class.
In order to keep track of differences, we would need to store additional attributes. We could
provide the information from Question #5 when creating an object:

angus = Animal("Cow'", '"grass", "walked", "nostrils", '"moo")

The UML diagram below outlines this approach. As a team, discuss this design and become
familiar with the accompanying source code.

Animal

eats_only : str
moved : str
name : str
nasal : str
position : tuple
respired : int
sound : str
stomach : list

__init__(name : str, eats_only : str, moved : str, nasal : str, sound : str)
eat(item : str)

move(delta : tuple)

nuzzle(position : tuple)

respire()

speak()

wallow()

Questions (10 min) Start time:

7. Circle the three original attributes that were defined in Model 1.

8. Circle the two methods that were NOT common to all four classes in Model 1.

9. Write a statement that creates an Animal object representing a lion. Assign it to a variable
named simba.

10. What methods does simba now have that it did not have in Model 1?



11. Describe 1-2 advantages the Model 2 design has compared to Model 1.

12. Describe 1-2 disadvantages the Model 2 design has compared to Model 1.

Model 3 Derived Classes

We can improve the code from Model 2 by using derived classes for Cow, Horse, Lion, and Pig.
These classes only contain the attributes and methods specific to them. Animal is a base class
that contains attributes and methods they all have in common. This language feature is known
as inheritance, because derived classes “inherit” attributes and methods from the base class.

The UML diagram below outlines this approach. As a team, discuss this design and become
familiar with the accompanying source code.

Animal

eats_only : str
moved : str
name : str
position : tuple
respired : int
sound : str
stomach : list

__init__(name : str, eats_only : str, moved : str, sound : str)
eat(item : str)
move(delta : tuple)

respire()
speak()
Horse \ Pig
Cow Lion
__init_ () __init_ ()
_init__() nuzzle(position : tuple) _init_ () respire()
respire() wallow()




Questions (20 min) Start time:

13. Open the lion.py source file. How many methods are defined in the Lion class? List the
name of each one.

14. Type the following code into a Python Shell (in the same location as the source files). What
methods are listed in the help?

lion Lion
help(Lion)

15. Write a statement that creates a Lion object. Assign it to a variable named simba. How is
this statement different from Question #9?

16. In a Python Shell, what is the value of simba.speak()? Where did this value come from?

17. Does simba have any methods that it did not have in Model 1? Justify your answer.

18. Based on the source files, how does the __init__ method of Animal differ from the __init__
methods of the derived classes?

19. What is the meaning of the built-in function super () that is used in the derived classes?

20. Describe 1-2 advantages the Model 3 design has compared to Model 2.



	UML Class Diagrams
	Single-Class Approach
	Derived Classes

