
 13-1

Chapter 13. Inheritance and Polymorphism

Objects are often categorized into groups that share similar characteristics. To illustrate:

• People who work as internists, pediatricians, surgeons, gynecologists, neurologists, general

practitioners, and other specialists have something in common: they are all doctors.

• Vehicles such as bicycles, cars, motorcycles, trains, ships, boats and airplanes are all mobile

machines.

• The elements helium, neon, argon, krypton, xenon, and radon are known as the inert (or noble)

gasses because each has the full complement of eight electrons in its outermost atomic shell, and

thus does not react readily with other elements.

These are just a few of the many situations in which we organize objects into groups because of their

common characteristics. When two or more objects have some characteristic in common, those objects

are said to be related by virtue of sharing that characteristic.

Much of the history of science has involved the classification of objects by identifying their common

characteristics. For example, when biologists discover a new species, they study all of its characteristics

to determine where it fits into their elaborate classification scheme.

One of the aims of object-oriented programming is to simplify the process of building software models of

real-world objects. Since real-world objects may be related to one another, an object-oriented language

must provide some mechanism for modeling such relationships. In Java, the keyword extends serves

this purpose. In this chapter, we study Java’s extends mechanism, and see how it can be used to save

coding effort in a carefully designed system.

13.1. Example: A Figure-Drawing Application

Consider the problem of building a drawing application that

allows a user to draw different sorts of figures on a drawing

canvas. This application might look something like the example

shown in Figure 13-1. The application should allow users to

choose the figures they’d like to draw and the colors they’d like

to use from a drawing palette of some sort and to use the mouse

to specify where the figures go and how large they are.

This figure-drawing domain is similar to the domains discussed

in the introduction in that it contains a variety of objects such as

squares, rectangles, ellipses, lines and squiggles, all of which

share the properties common to geometric figures. Such figures

have screen locations specifying where they are to be drawn on

Figure 13-1. A simple drawing application

 13-2

the canvas, fill settings specifying whether they are to be filled with color or merely outlined, and color

settings specifying the colors to use. There are also interesting relationships between the different figure

types. Squares are also rectangles but not the reverse. Ellipses can be filled, but not lines.

A programmer could build different classes to model each figure type, e.g., Rectangle, Ellipse,

Line, etc., but that would likely lead to considerable amounts of redundant code. For example, every

figure class would have to store an instance variable specifying their color and provide largely identical

constructors, accessors and mutators for initializing and managing that variable’s value. Redundancy such

as this is rarely a good programming practice.

This chapter introduces the techniques offered by object-oriented programming for implementing

applications such as this in a more concise and consistent manner.

13.2. Modeling Objects and Relationships

The object-oriented programming (OOP) paradigm is based on three fundamental mechanisms:

 Encapsulation

 Inheritance

 Polymorphism

Encapsulation, the focus of Chapter 9, is the language construct that bundles data and methods into a

single class specification. Inheritance and polymorphism are addressed in the following sections. As we’ll

see, inheritance is a mechanism for sharing common features amongst classes while polymorphism is a

mechanism for designating unique features for each class.

13.2.1. Revisiting the Example

Before discussing inheritance and polymorphism, this section presents a first iteration of the figure-

drawing application introduced in Section 13.1, which we will call Simpledraw. It is not difficult to

implement a rectangle-drawing version of Simpledraw using mechanisms covered earlier in the text.

 13-3

Rectangle.java
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

/**

 * A simple rectangle-drawing class

 *

 * @author kvlinden

 * @version Fall, 2009

 */

public class Rectangle {

 private Point myStart;

 private int myColor;

 private int myWidth, myHeight;

 private boolean myFilled;

 public Rectangle(Point start, int width, int height,

 int color, boolean filled) {

 myStart = start;

 myColor = color;

 myWidth = width;

 myHeight = height;

 myFilled = filled;

 }

 public int getColor() {

 return myColor;

 }

 public void setColor(int color) {

 myColor = color;

 }

 public void render(PApplet p) {

 p.stroke(myColor);

 if (myFilled) {

 p.fill(myColor);

 } else {

 p.noFill();

 }

 p.rect(myStart.x, myStart.y, myWidth, myHeight);

 }

}

The class models a rectangle by encapsulating:

 instance variables representing the rectangle’s starting point (its upper left point), its color,

width, height and a boolean indicating whether it is to be filled with color or simply outlined

 methods specifying how to construct and draw the figure, and an accessor and mutator for the

color attribute.

As has been our practice since Chapter 11, the render() method receives the drawing context from its

calling object, which must be a PApplet, and uses Processing-based drawing methods to render the

rectangle on the canvas.

As it stands, this class is a perfectly appropriate model of a rectangle, but when we consider adding

support for ellipses, lines and other figure types, it’s clear that they too will need to represent a color

 13-4

attribute and provide support for that attribute in the constructor, draw methods, accessors and mutators.

As mentioned in the previous section, we’d like to avoid reproducing this amount of redundant code;

redundant code is time-consuming to produce and can lead to inconsistencies, say, in the way color is

handled for each of the figure types. We would prefer to specify the color attribute in one place and allow

all the figure objects to share that attribute.

13.3. Inheritance

Inheritance is a language construct that supports the sharing of features amongst different objects.

Consider the domain of vehicles, which includes bicycles, skateboards, cars and jets. On the one hand,

vehicles of these types share some common features; they tend to be manufactured by particular

companies and identified by a model name or number. For example, the “7.4FX” is a particular bicycle

model manufactured by Trek Corporation and the “Rocket” is a particular skateboard model

manufactured by Ally Corporation. On the other hand, each of these vehicle types tends to have

distinguishing features not shared by other vehicle types. For example, bicycles can be assessed by their

number of gears, e.g., 27 for the Trek 7.4FX, while skateboards can be assessed by the length of their

board, e.g., the Rocket has a 31.5-inch board.

Inheritance allows a programmer to separate those attributes and behaviors that are shared between

vehicle types and those that are unique to each particular type. The shared features are collected in a

single class known as the parent or superclass and the unique features are separated into the child or

subclasses. This can be visualized as follows.

In class diagrams such as this, subclasses point up to their superclass. The attributes and behaviors

implemented in the superclass are “inherited” by all the subclasses. The attributes and behaviors

implemented in one of the subclasses are unique that subclass. In a sense, the features shared by subclass1

and subclass 2, that might otherwise have been implemented separately in each of the subclasses, can be

collected and “raised up” into the single shared superclass.

Because Java does not implement multiple inheritance, subclasses can only have one superclass.

Superclasses, on the other hand, can have many subclasses.

For example, in the vehicles domain, a programmer might implement the brand and model in a vehicle

superclass, the engine size in a car subclass and the number of jet engines in a jet subclass.

 13-5

13.3.1. The extends Clause

Inheritance is implemented in Java using the extends clause. A class Subclass1 can inherit

attributes and behaviors from another class Superclass as follows:

class Superclass {

 // attributes and behaviors shared by all subclasses...

}

class Subclass1 extends Superclass {

 // attributes and behaviors unique to Subclass1...

}

The extends Superclass clause specifies the inheritance. It indicates that any object of type

Subclass1 is also an object of type Superclass and thus that a Subclass1 object can do anything

that a Superclass object can do. This construct provides considerable power for code sharing and

reuse.

For example, in the vehicle domain we could implement a Vehicle superclass as follows.

Vehicle.java
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

class Vehicle {

 private String myBrand, myModel;

 public Vehicle() {

 myBrand = "unknown";

 myModel = "unknown";

 }

 public Vehicle(String brand, String model) {

 setBrand(brand);

 setModel(model);

 }

 public String getBrand() {

 return myBrand;

 }

 public void setBrand(String brand) {

 myBrand = brand;

 }

 public String getModel() {

 return myModel;

 }

 public void setModel(String model) {

 myModel = model;

 }

 public String toString() {

 return getBrand() + " " + getModel();

 }

}

 13-6

This class models a vehicle object by storing the brand and model attributes for that object and providing

constructors, accessors and mutators for maintaining those attributes. This class is implemented in the

same manner that we implemented classes in Chapter 9. Given this (super)class, we can now implement

a Bicycle subclass as follows.

Bicycle.java
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

class Bicycle extends Vehicle {

 private int myGearCount;

 public Bicycle() {

 myGearCount = 1;

 }

 public Bicycle(int gearCount) {

 setGearCount(gearCount);

 }

 public int getGearCount() {

 return myGearCount;

 }

 public void setGearCount(int gearCount) {

 myGearCount = gearCount;

 }

}

This Bicycle class inherits all the features of the Vehicle class and adds additional features handling

the number of gears of the bicycle. Given these class definitions, we can write the following code

segment.

Code:

 Bicycle trek74 = new Bicycle();

trek74.setGearCount(27);

 System.out.println(trek74.getGears());

 trek74.setBrand("Trek");

 trek74.setModel("7.4FX");

 System.out.println(trek74);

Output:
27

Trek 7.4FX

This code segment declares a bicycle object, trek74, sets its number of gears to 27 and prints that

number out (thus the first line of the output). This is standard behavior for the classes we’ve worked with

in previous chapters, implemented using the myGearCount instance variable and its associated accessor

and mutator methods. The next segment of code, however, sets the brand and model of the trek74

object to “Trek” and “7.4FX” respectively and prints the object itself out using the toString()

method. This behavior is not implemented in the Bicycle class itself; it is inherited from the Vehicle

 13-7

class. Thus, we can say that a Bicycle object is a Vehicle object in that it can do anything that a

Vehicle object can do.

With the features shared by vehicle objects implemented in the Vehicle class, we can now define new

vehicle subclasses that share those same features. The following class defines a skateboard class that

reuses the vehicle features.

Skateboard.java
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

class Skateboard extends Vehicle {

 private double myBoardLength;

 public Skateboard() {

 myBoardLength = 0;

 }

 public Skateboard(double boardLength) {

 setBoardLength(boardLength);

 }

 public double getBoardLength() {

 return myBoardLength;

 }

 public void setBoardLength(double boardLength) {

 myBoardLength= boardLength;

 }

}

This Skateboard class inherits the vehicle features just as the Bicycle class does, as can be seen in

the following code segment.

Code:

 Skateboard board = new Skateboard();

 board.setBoardLength(31.5);

 System.out.println(board.getBoardLength());

 board.setBrand("Ally");

 board.setModel("Rocket");

 System.out.println(board);

Output:
31.5

Ally Rocket

As with the Bicycle class, the Skateboard class inherits the support for the brand, model and the

toString() method, to which it adds unique support for board length.

This class structure for our vehicle domain can be viewed as follows.

 13-8

The Vehicle class’s instance variables, myBrand and myModel, and its toString() method are

listed in the Vehicle class box; the associated accessors and mutators are not explicitly listed to save

space. Similarly, the Bicycle and Skateboard each define their own instance variables:

myGearCount and myBoardLength respectively.

13.3.2. Multi-Level Inheritance

Inheritance is a recursive mechanism and can therefore be used to implement multiple levels of sharing.

The Java extends clause can be used as shown in the code here on the left to produce the class structure

shown on the right.

class SuperClass {

 // features shared by all descendants...

}

class SubClass extends SuperClass {

 // features shared by descendants of SubClass...

}

class SubSubClass extends SubClass {

 // features unique to SubSubClass...

}

In this structure, objects of type SubSubClass inherit features from both SubClass and SuperClass. This

mechanism provides the ability to create tree-shaped class hierarchies that can be used to share features

amongst subsets of subclasses.

In the vehicle domain, this can be useful when we introduce cars and jet airplanes. Cars and jets are

vehicles that are mechanically powered, and thus share features related to fuel and fuel consumption.

Because bicycles and skateboard are not powered, it makes no sense to introduce these features at the

level of the Vehicle class, but we can introduce a new level in the class hierarchy for powered vehicles

as shown here.

SubClass

SubSubClass

SuperClass

 13-9

In this class structure, all vehicles share the brand and model features, but only the car and jet share the

fuel type feature.

PoweredVehicle.java
class PoweredVehicle extends Vehicle {

 private String myFuelType;

 public PoweredVehicle() {

 setFuelType("unknown");

 }

 public String getFuelType() {

 return myFuelType;

 }

 public void setFuelType(String fuel) {

 myFuelType = fuel;

 }

}

Vehicle

+myBrand
+myModel

+toString()

Bicycle

+myGearCount

Skateboard

+myBoardLength

PoweredVehicle

+myFuelType

Car

+myEngineSize

Jet

+myEngineCount

 13-10

Car.java
class Car extends PoweredVehicle {

 private String myEngineSize;

 public Car() {

 myEngineSize = "unknown";

 }

 // accessors/mutators for engine
 // size...

}

Jet.java
class Jet extends PoweredVehicle {

 private int myEngineCount;

 public Jet() {

 myEngineCount = 0;

 }

 // accessors/mutators for engine

 // count...

}

Given these classes we can write the following code segments.

Code:
 Car vw = new Car();

 vw.setEngineSize("1.8 liter");

 System.out.println(vw.getEngineSize());

 vw.setFuelType("gasoline");

 System.out.println(vw.getFuelType());

 vw.setBrand("Volkswagon");

 vw.setModel("Golf");

 System.out.println(vw);

Output:
 1.8 liter

 gasoline

 Volkswagon Golf

Code:
 Jet lear45 = new Jet();

 lear45.setEngineCount(2);

 System.out.println(lear45.getEngineCount());

 lear45.setFuelType("jet fuel");
 System.out.println(lear45.getFuelType());

 lear45.setBrand("Learjet");

 lear45.setModel("LJ45");

 System.out.println(lear45);

Output:
 2
 jet fuel

 Learjet LJ45

Note how both the Car object, vw, and the Jet object, lear45, manage their own unique features:

engine size and engine count respectively, but share the fuel type feature from PoweredVehicle and

the brand and model features from Vehicle.

When a method is called on an object, Java looks for a definition of the method in the object’s class first,

and continues up the class hierarchy until it finds a definition. It uses the first definition it finds. For

example, when the setModel() method is called on the vw object (i.e., vw.setModel("Golf")),

Java looks first in the Car class, then proceeds to the PoweredVehicle class and finally to the

Vehicle class, where it finds a definition.

13.3.3. The Java Class Hierarchy

We have actually been taking advantage of inheritance all along because Java structures its entire API

hierarchically
1
. There are far too many classes – more than 4000 in Java 7 – to show, but the root of this

hierarchy is the Object class, making it the common ancestor for all Java classes, as shown here.

1
 See http://docs.oracle.com/javase/7/docs/api/index.html.

http://docs.oracle.com/javase/7/docs/api/index.html

 13-11

Note that PApplet as well as all the other Processing-specific classes are integrated into the Java class

hierarchy.
2
 In addition, every new class that any programmer writes is made an extension of the Object

class by default, regardless of whether the programmer explicitly includes the extends Object clause

or not.

Because of this every class inherits the features of the Object class, which include the toString(),

clone() and equals() methods. This explains why we can always print an object on the console;

every class inherits the toString() method from the Object class automatically.

13.3.4. Accessing Superclass Constructors

The Java class-construction mechanism provides two useful keywords: this and super. Both are

discussed in this section with respect to their use in accessing constructor methods.

The this Keyword

The keyword this refers to the current object itself. It is occasionally used to access one constructor

from another and also to access data attributes that are out of scope, as shown here.

class A {

 private int someValue;

 public A() {

 this(1); // Call the explicit-value constructor.
 }

2
 See

http://processing.googlecode.com/svn/trunk/processing/build/javadoc/core/index.html?processing/core/package-

tree.html.

http://processing.googlecode.com/svn/trunk/processing/build/javadoc/core/index.html?processing/core/package-tree.html
http://processing.googlecode.com/svn/trunk/processing/build/javadoc/core/index.html?processing/core/package-tree.html

 13-12

 public A(int someValue) {

 this.someValue = someValue;// Access the class instance variable.
 }

}

In this code, the default constructor uses this to access the explicit-value constructor, passing a default

value for the instance variable. The explicit-value constructor must use this to access the class instance

variable because the parameter of the same name overrides the global definition in the scope of the

explicit-value constructor.

The super Keyword

The keyword super refers to the superclass of the current object. It performs a similar function, but it

refers to the immediate superclass of the current class. This is useful when a class needs to access: (1) its

superclass’s constructor, discussed in this section; and (2) its superclass’s methods, discussed in the next

section.

While subclasses inherit the attributes and methods of their superclass, they do not inherit their

superclass’s constructors. To invoke a superclass’s constructor, a subclass must use the super keyword

as shown here.

 super(argumentList);

The argument list provides the arguments required by the superclass’s constructor and may be empty for

the default constructor. Note that this call to the superclass’s constructor must be the first statement in a

subclass’s constructor.

For the vehicle domain, a programmer will likely want to improve the current implementation of the

Bicycle class by providing an explicit-value constructor that specifies all the instance variables. This

constructor would be invoked as follows.

 Bicycle feltAR5 = new Bicycle("Felt", "AR5", 30);

The current version of the Bicycle class does not provide a constructor with this signature because it

cannot access the myBrand and myModel variables it inherits from the Vehicle class. They are

declared as private data items and cannot, therefore, be accessed by any class other than Vehicle,

even Vehicle’s own subclasses.
3

Instead, a programmer can use the super keyword to access the features of the superclass’s constructor

method. Given the definition of the Vehicle class shown in Section 13.3.1, which includes an explicit-

value constructor that receives two strings representing the brand and model respectively, we can revise

the Bicycle class as shown here.

3
 We could declare those instance variables as public, but that would lay them open to access from any class,

which violates the principle of information hiding. As an alternative, Java provides a protected designation,

which indicates that the instance variables be accessible to this class and all its descendants. This text does not adopt

the practice of using protected data items, but rather implements subclasses to access and manipulate inherited data

items through the inherited accessor and mutator methods.

 13-13

Bicycle.java (revised)
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

class Bicycle extends Vehicle {

 private int myGearCount;

 public Bicycle() {

 myGearCount = 1;

 }

 public Bicycle(int gearCount) {

 setGearCount(gearCount);

 }

 public Bicycle(String brand, String model, int gearCount) {

 super(brand, model);

 setGearCount(gearCount);

 }

 // The accessors and mutators are repeated here...
}

The new constructor method defined in lines 13-16 can be invoked as shown above. The first two

arguments representing the brand and model are passed directly to the Vehicle class’s explicit-value

constructor using the super keyword. The gear count argument is then handled directly in the normal

way.

By default, Java includes an invocation of the superclass’s default constructor for all classes. Thus, the

Bicycle class’s default constructor is actually implemented as follows.

public Bicycle() {

 super();

 myGearCount = 1;

 }

For this reason, it is generally a good idea to provide a default constructor for every superclass, because

this constructor will be called, either explicitly or implicitly, by all the subclasses. Java produces a

compiler error if a default constructor is called but is not explicitly defined. For example, if we were to

remove the Vehicle class’s default constructor, Java would signal compiler errors for the default

constructors for all its subclasses, i.e., Bicycle, Skateboard and PoweredVehicle.

Because this automatic invocation of the superclass’s constructor is performed recursively, constructing

an object of some subclass automatically invokes the constructors of all its ancestors, starting with the

highest-level constructor and moving down the class hierarchy. For example, constructing a Car object,

automatically invokes the constructors for the Object, Vehicle, PoweredVehicle and Car classes

in that order.

13.3.5. Overriding Superclass Methods

Subclasses are not required to use the same definitions of all the methods they inherit; they can replace

them with specialized definitions. This is called overriding the inherited method. A programmer can

override an inherited method as follows.

 13-14

class Superclass {

 // other features of the superclass...

 public int superClassMethod() {

 // do something...

 return 1;

 }

}

class Subclass extends Superclass {

 // other features of the subclass...

 public int superClassMethod() {

 // do something different...

 return 2;

 }

}

In this code, the subclass provides its own definition of the superclass’s superClassMethod(). An

object of type Subclass will execute its own version of superClassMethod(), that is it will “do

something different” and return 2 rather than 1.

Note the difference between “overriding” a method as described here and “overloading” a method as

described in a previous chapter. In contrast to overriding, overloading a method means that we’ve defined

a new method with the same name but a different signature. Constructor methods are commonly

overloaded. For example, the Bicycle class defined in the previous section provides three constructors:

Bicycle() defined in lines 5-7; Bicycle(int) defined in lines 9-11 and Bicycle(String,

String, int) defined in lines 13-16.

If necessary, the specialized definitions can use the super keyword to access the functionality

implemented in the superclass methods being overridden. This can be done using the following syntax.

 super.superclassMethod(argumentList);

This allows the subclass to augment the functionality of the superclass’s definition of the inherited

method.

As an example in the vehicle domain, a programmer might want to have a specialized toString()

method for the Bicycle class that provides more information than the toString() method it inherits

from the Vehicle class discussed in Section 13.3.1. This method can be defined as follows.

 public String toString() {

 return "Bicycle: " + super.toString() + "\n\tgears: " + getGearCount();

 }

Given this definition overriding the inherited method, we get the following behavior.

Code:

 Bicycle feltAR5 = new Bicycle("Felt", "AR5", 30);

 System.out.println(feltAR5);

 13-15

Output:
Bicycle: Felt AR5

 gears: 30

As you recall, the original toString() method inherited the Vehicle class would have simply printed

out “Felt AR5”. That toString() method couldn’t possibly add the string “Bicycle:” as shown here

because it can’t know which of the subclasses it is working for. It could be a bicycle, or it could be a

skateboard, car, jet or some new descendant that a programmer has chosen to implement. Only the

Bicycle class can make this assumption. On the other hand, the Bicycle class would like to reuse the

basic features provided by the Vehicle class’s toString() in combination with additional, bicycle-

specific information. To access this functionality, the overridden version of toString() calls the

method it is overriding by saying super.toString().

This feature works recursively as well. Rewriting the Car and PoweredVehicle toString()

methods to take advantage of this approach is left as an exercise for the reader.

13.3.6. Revisiting the Example

Applying the techniques described in this section provides the basis we need to implement consistent

definitions of figure classes such as rectangle, ellipses and lines without resorting to redundant code. The

class structure that we will implement can be visualized as follows.

Figure

-myStart: Point
-myColor: int

Line

-myEnd: Point

ClosedFigure

-myFilled: boolean
-myWidth : int
-myHeight : int

Rectangle Ellipse

 13-16

Figure will be the root class and will provide features supporting the figure’s color and its “start” point,

where the start point for a line is its first point, for a rectangle is it upper left point and for an ellipse is its

center point. Closed figures have a width and height, and can be either filled or unfilled. Definitions for

these classes are as follows.

Figure.java
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

class Figure {

 private Point myStart;

 private int myColor;

 public Figure() {

 myStart = new Point(0, 0);

 myColor = 0;

 }

 public Figure(Point start) {

 myStart = start;

 myColor = 0;

 }

 public Figure(Point start, int color) {

 myStart = start;

 myColor = color;

 }

 public Point getStart() {

 return myStart;

 }

 public int getColor() {

 return myColor;

 }

 public void setColor(int color) {

 myColor = color;

 }

}

Figure is a basic class providing features for a starting point and color.

Line.java
1

2

3

4

5

6

7

8

9

10

11

12

13

14

class Line extends Figure {

 private Point myEnd;

 public Line(Point start, int color) {

 super(start, color);

 myEnd = start;

 }

 public Line(Point start, Point end, int color) {

 super(start, color);

 myEnd = end;

 }

}

 13-17

Line extends Figure, adding support for an end point not shared by the other figure classes.

ClosedFigure.java
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

class ClosedFigure extends Figure {

 private int myWidth, myHeight;

 private boolean myFilled;

 public ClosedFigure() {

 myWidth = myHeight = 0;

 myFilled = false;

 }

 public ClosedFigure(Point start, int color, int width, int height,

 boolean filled) {

 super(start, color);

 myWidth = width;

 myHeight = height;

 myFilled = filled;

 }

 public int getWidth() {

 return myWidth;

 }

 public void setWidth(int width) {

 myWidth = width;

 }

 public int getHeight() {

 return myHeight;

 }

 public void setHeight(int height) {

 myHeight = height;

 }

 public boolean getFilled() {

 return myFilled;

 }

}

ClosedFigure bundles those features shared by all closed figures, including rectangles and ellipses.

Rectangle.java
1

2

3

4

5

6

7

8

9

10

11

12

class Rectangle extends ClosedFigure {

 public Rectangle(Point start, int width, int height, int color,

 boolean filled) {

 super(start, color, width, height, filled);

 }

 public Rectangle(Point start, Point end, int color, boolean filled) {

 super(start, color, end.x - start.x, end.y - start.y, filled);

 }

}

 13-18

Rectangle extends ClosedFigure with a constructor that automatically converts from a start-point-

end-point characterization of a rectangle to the start-point-width-height characterization required by

ClosedFigure. This isn’t a particularly exciting at this point; the interesting part comes later in the

chapter when we add a render() method that draws the rectangle on the canvas.

With these basic figure classes in place, we can write code as follows:

Code:

 Rectangle myRectangle = new Rectangle(new Point(10, 10),

 new Point(280, 280),

 false);

 System.out.println(myRectangle);

 System.out.println(myRectangle.getFilled());

 System.out.println(myRectangle.getColor());

Output:
c13oop.text.simpledraw.simpledraw1.Rectangle@9304b1

false

0

This code segment declares a non-filled Rectangle object, myRectangle, with the given start and

end point. It then prints the myRectangle object, which uses the default toString() method from

the Object class, and the filled and color settings. Note how the default toString() method prints

the class name (and package) and an unintelligible memory address value. We could have improved this

point, but these figure classes are designed to be drawn on a canvas, not printed to a console, so we won’t

bother to override the toString() method. Doing so is left as an exercise for the reader, as is the

implementation of the Ellipse class, which is very similar to the Rectangle class.

13.4. Polymorphism

Where inheritance allows subclasses to share features, polymorphism allows subclasses to distinguish

themselves from one another. Given that in Greek, poly means “many” and morph means “form”, the

term polymorphism is used to describe the situation in which a single statement can take on different

definitions. This chapter describes how to implement polymorphic behavior in Java.

13.4.1. Declarations and Inheritance

Suppose that we write

 Vehicle aVehicle = new Bicycle();

Because aVehicle is declared as a Vehicle and a Bicycle object is a Vehicle, this is a legal

statement. A variable declared as an object of class C can store a reference to any object whose class is a

descendant of C.

In contrast, the opposite statement

 13-19

Bicycle aBicycle = new Vehicle(); // ERROR!

is not valid because while a Bicycle object is a Vehicle object, the reverse in not true. All bicycles

are vehicles, but not all vehicles are bicycles.

This asymmetry has consequences not only for declarations and initializations, but also for method

binding. Given that aVehicle is declared as a Vehicle object, Java cannot be certain that it will have

access to the Bicycles class’s definition of getGearCount(), in spite of the fact that it is initialized

to a new Bicycle object. For all we know, aVehicle could be reassigned to a new Skateboard

object, which doesn’t provide a definition for getGearCount(). Thus, the method invocation

 aVehicle.getGearCount() // ERROR!

produces a compiler error. getGearCount() is defined only for objects declared to be of type

Bicycle, not for objects declared to be of type Vehicle.

13.4.2. Dynamic Binding

Our Vehicle and Bicycle classes currently provide definitions of the toString() method, which

we repeat here for convenience.

Vehicle.java

1

2

3

4

5

6

7

8

9

class Vehicle {

 // instance variables, constructors, accessors and mutators...

 public String toString() {

 return getBrand() + " " + getModel();

 }

}

Bicycle.java

1

2

3

4

5

6

7

8

9

class Bicycle extends Vehicle {

 // instance variables, constructors, accessors and mutators...

 public String toString() {

 return "Bicycle: " + super.toString() +

 "\n\tgears: " + getGearCount();

 }

}

The Vehicle class provides a more general definition, which the Bicycle class overrides with a

bicycle-specific version. Given these definitions, consider the following code segment.

Code:

 Vehicle aVehicle = new Bicycle("Trek", "7.4FX", 27);

 System.out.println(aVehicle);

 13-20

Output:

Bicycle: Trek 7.4FX

 gears: 27

In this case, Java cannot be certain at compile time which definition of the toString() method should

be invoked. Both the Vehicle class and the Bicycle class provide one. In cases like this, Java

determines the appropriate definition to invoke at run time based not on the declared type of aVehicle

but rather on the actual type of the object referred to by aVehicle. If aVehicle refers to a Bicycle

object, then the Bicycle version is invoked; if aVehicle refers to a Vehicle object, then the

Vehicle version is invoked. In this case, the specialized Bicycle version is invoked and we get the

bicycle-specific output shown above.

This determination is known as binding, that is, choosing a particular definition of toString() to

invoke. Bindings made at run time are known as dynamic bindings. This is an example of polymorphic

behavior because the invocation of toString() in this situation can invoke any one of potentially

many definitions of that method.

Java’s dynamic binding mechanism works as follows. Given a method m() invoked on an object of class

C, if there is a definition of m() in C, then invoke that method definition. Otherwise, move to C’s parent

class and search there, proceeding up the class hierarchy until a definition is found.

13.4.3. Abstract Methods and Classes

Imagine now that rather than overriding an existing method like toString(), you wanted to add a new

method definition for Vehicle objects, say a method that returns the sort of movement that the vehicle

object implements. For example, bicycles “cycle” and skateboards “skate”. We could do this by defining

a getLocomotion() method for each of the Vehicle subclasses. For Bicycle, this method could

be implemented as follows:

 public String getLocomotion() {

 return "cycle";

 }

Given similar definitions for Skateboard, Car and Jet, suppose that we would like to implement an

array of Vehicle objects and print their forms of motion as follows.

 Vehicle[] vehicles = new Vehicle[2];

 vehicles[0] = new Bicycle("Trek", "7.4FX", 27);

 vehicles[1] = new Skateboard("Ally", "Rocket", 31.5);

 for (int i = 0; i < vehicles.length; i++) {

 System.out.println(vehicles[i].getLocomotion());

 }

This code declares an array of two Vehicle objects and initializes each entry to a different subclass of

Vehicle. It then loops through those vehicle objects printing the form of motion for each. The logic

seems fine, but, unfortunately, the invocation of getLocomotion() produces a compiler error

indicating that the locomotion method is not defined for the Vehicle class.

 13-21

We could consider implementing a generic version of getLocomotion() in the Vehicle class that

the subclasses can override as appropriate – we’ve seen this approach work with toString – but Java

provides an alternative approach for such situations based on abstract methods.

An abstract method declares but does not define a method. It is specified using the abstract modifier

as follows.

 abstract returnType methodIdentifier(parameterList);

This declaration is just like the method definitions we’ve used to this point except that it opens with the

abstract modifier and ends with a ; rather than a full method definition. The default designation for

methods is concrete meaning that they must provide a method definition. Declaring an abstract method in

a class C has the following consequences:

 Class C must also be declared as an abstract class as follows:

abstract class C { … }

This indicates that objects of type C cannot be created using new. Doing so would make little

sense given that there is no definition of the abstract method(s) it contains and thus the objects

would not know how to invoke that method.

 All concrete subclasses of C must either implement C’s abstract method(s) or inherit them from

some other subclass of C. This is a sensible requirement because we can make an object of

concrete types, so they must have definitions for all their methods.

One useful feature provided by abstract methods is that it can be used to implement the

getLocomotion() method described above. We can augment the Vehicle and Bicycle classes as

follows.

Vehicle.java

1

2

3

4

5

6

7

abstract class Vehicle {

 // instance variables, constructors, accessors and mutators...

 public abstract String getLocomotion();

}

Bicycle.java

1

2

3

4

5

6

7

8

9

class Bicycle extends Vehicle {

 // instance variables, constructors, accessors and mutators...

 public String getLocomotion() {

 return "cycle";

 }

}

 13-22

Note that Vehicle now includes an abstract definition of getLocomotion() in line 5. This can be

read as a sort of “promissory note” indicating that all concrete subclasses of Vehicle must implement

the getLocomotion() method. Note also that Vehicle is now declared to be an abstract class,

which means that programmers can no longer create new Vehicle objects using new Vehicle().

This not a sacrifice because it doesn’t really make any sense to declare a “generic” Vehicle object that

isn’t going to be initialized to either a Car, Jet or other subclass of Vehicle.

We can make similar modifications to the other subclasses of Vehicle: Skateboard, Car and Jet

will get their own concrete definitions of getLocomotion(), Skateboard returning “skate”, Car

returning “drive”, etc. PoweredVehicle must become an abstract class like Vehicle but otherwise

remains unchanged; it cannot define getLocomotion() and thus simple inherits the abstract definition

from Vehicle. Given these modifications, which are left as an exercise for the reader, we can execute

this expanded version of the code segment shown above.

Code:

 Vehicle[] vehicles = new Vehicle[4];

 vehicles[0] = new Bicycle("Trek", "7.4FX", 27);

 vehicles[1] = new Skateboard("Ally", "Rocket", 31.5);

 vehicles[2] = new Car("Volkswagon", "Golf", "gasoline", "1.8 Liter");

 vehicles[3] = new Jet("Lear", "LJ45", "jet fuel", 2);

 for (int i = 0; i < vehicles.length; i++) {

 System.out.println(vehicles[i].getLocomotion());

 }

Output:

cycle

skate

drive

fly

The polymorphic call to getLocomotion() no longer produces a compiler error. There is an abstract

declaration of the getLocomotion() method in the Vehicle class so all its concrete subclasses are

required to have access to a full definition of that method, either by defining one themselves or by

inheriting one from a superclass.

As the for loop executes, Java will bind the appropriate definition of getLocomotion() based on

the actual type of the object in the vehicles array. In this output, the Bicycle version returns

“cycle”, the Skateboard version returns “skate”, the Car version returns “drive” and the Jet version

returns “fly”.

13.4.4. Revisiting the Example

For the next iteration of the chapter example, we’d like to actually be able to draw the figures on a canvas,

which requires that we implement a render() method for each of the concrete figure classes, i.e.,

Line, Rectangle and Ellipse. There will be a unique definition of render() for each concrete

 13-23

figure type, and we’d like to be able to create a list of Figure objects and bind the correct definition of

render() for each list entry. To do this, we will augment the class structure as follows.

In this revised structure, the class hierarchy is still the same, but we’ve added an abstract render()

method declaration, shown in italics in the Figure class box, and concrete render() method

definitions to each of the concrete subclasses, shown in normal font in Line, Rectangle and

Ellipse. As a consequence of this change, we’ve also made the Figure and ClosedFigure classes

abstract.

Figure.java

1

2

3

4

5

6

7

abstract class Figure {

 // instance variables, constructors, accessors and mutators...

 public abstract void render(PApplet p);

}

Line.java

1

2

3

4

5

6

7

8

class Line extends Figure {

 // instance variables, constructors, accessors and mutators...

 public void render(PApplet p) {

 p.stroke(getColor());

 p.line(getStart().x, getStart().y, myEnd.x, myEnd.y);

 }

Figure

-myStart: Point
-myColor: int

+render()

Line

-myEnd: Point

+render()

ClosedFigure

-myFilled: boolean
-myWidth : int
-myHeight : int

Rectangle

+render()

Ellipse

+render()

 13-24

ClosedFigure.java

1

2

3

4

5

abstract class ClosedFigure extends Figure {

 // This remains unchanged.

}

Rectangle.java

1

2

3

4

5

6

7

8

9

10

11

12

13

14

public class Rectangle extends ClosedFigure {

 // instance variables, constructors, accessors and mutators...

 public void render(PApplet p) {

 p.stroke(getColor());

 if (getFilled()) {

 p.fill(getColor());

 } else {

 p.noFill();

 }

 p.rect(getStart().x, getStart().y, getWidth(), getHeight());

 }

}

Given this model definition, we can implement a PApplet-based GUI application that creates and draws a

list of figures on the canvas. The implementation has a standard PApplet-based GUI controller that we

will not discuss here. It follows the simple pattern for encapsulating Processing applications set in

Chapter 11. We focus instead on the PApplet panel. This class implements the canvas and creates a list of

figure objects, as shown here in SimpledrawPanel.java.

SimpledrawPanel.java

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

public class SimpledrawPanel extends PApplet {

 private final int BACKGROUND_COLOR = color(255),

 WIDTH = 300, HEIGHT = WIDTH;

 private ArrayList<Figure> myFigures;

 public SimpledrawPanel() {

 myFigures = new ArrayList<Figure>();

 myFigures.add(new Rectangle(new Point(10, 10),

 new Point(280, 280),

 color(0), false));

 myFigures.add(new Ellipse(new Point(11, 11),

 new Point(278, 278),

 color(255, 55, 55), true));

 myFigures.add(new Line(new Point(10, 10),

 new Point(280, 280),

 color(55, 255, 55)));

 myFigures.add(new Line(new Point(280, 10),

 new Point(10, 280),

 color(55, 55, 255)));

 }

 13-25

23

24

25

26

27

28

29

30

31

32

33

34

35

36

 public void setup() {

 size(WIDTH, HEIGHT);

 background(BACKGROUND_COLOR);

 smooth();

 noLoop();

 }

 public void draw() {

 for (int i = 0; i < myFigures.size(); i++) {

 myFigures.get(i).render(this);

 }

 }

}

In this implementation, the Panel defines myFigures, an ArrayList of Figure objects, and hard-

codes the insertion of a Rectangle object, an Ellipse object and two Line objects (see lines 9-21).

The draw() method includes a simple for-loop that renders each of the figures in the list using the

polymorphic render() method defined above. The program works regardless of the number and type

of the figure objects added to the list.

The output is as follows.

This output displays the four hard-coded figures rendered by SimpledrawPanel.java.

 13-26

13.5. The Example Revisited

As a final enhancement to the Simpledraw application, we will upgrade the system to support user-

directed figure-drawing as described in Section 13.1. The changes to support this application are largely

centered in the GUI code but there are some changes to the Figure hierarchy as well. A sample output

of the program is shown here.

Figure 13-3. Simpledraw

The user is allowed to choose any figure from the figure button panel

on the upper left, thus setting the figure model of the interface. They

can also choose a color from the color button panel and a filled/no-

filled status from the fill button panel to set the color and fill mode of

the interface. This figure shown above has one filled ellipse and a

number of colored “doodle” lines.

The code for this application is too large to repeat verbatim here, so

this section will focus instead on interesting new aspects of the

implementation.

13.5.1. Specifying the Figures Interactively

One interesting aspect of this application is that it allows its users to

interactively specify new figures. Figure 13-2 illustrates the process

by which users specify a rectangle: they click in the upper left, drag

the mouse diagonally across the rectangle and then release the mouse

Figure 13-2. Interactively specifying a

rectangle

 13-27

in the lower right. As the user is doing this, the interface shows the current state of the rectangle as it is

being drawn (illustrated by the dotted rectangles in the figure).

This feature is implemented in the SimpledrawPanel as follows.

SimpledrawPanel.java (selected methods)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

/**

 * Create a new figure object of the appropriate type and initialize its

 * start point, color and filled status.

 */

public void mousePressed() {

 if (myFigureMode.equals("rectangle")) {

 myCurrentFigure = new Rectangle(new Point(mouseX, mouseY),

 myColorMode, myFilledMode);

 } else if (myFigureMode.equals("ellipse")) {

 myCurrentFigure = new Ellipse(new Point(mouseX, mouseY),

 myColorMode, myFilledMode);

 } else if (myFigureMode.equals("doodle")) {

 myCurrentFigure = new Doodle(new Point(mouseX, mouseY),

 myColorMode);

 } else {

 myCurrentFigure = new Line(new Point(mouseX, mouseY),

 myColorMode);

 }

}

/**

 * Erase the previous temporary figure, change the end point to the

 * current mouse position and redraw the temporary figure.

 */

public void mouseDragged() {

 int figureColor = myCurrentFigure.getColor();

 myCurrentFigure.setColor(BACKGROUND_COLOR);

 myCurrentFigure.render(this);

 myCurrentFigure.setColor(figureColor);

 myCurrentFigure.updatePoint(new Point(mouseX, mouseY));

 myCurrentFigure.render(this);

}

/**

 * Add the new figure just created to the myFigures list.

 */

public void mouseReleased() {

 myFigures.add(myCurrentFigure);

}

These three methods implement the mouse-based interaction that creates figures as shown in Figure 13-2.

In mouseDragged() note:

 Lines 27-28 set the drawing color to the background color and redraw the figure in order to erase

the temporary figure image.

 Line 30 updates the second point of the figure definition, e.g., the lower right point for a

rectangle, to the current mouse position before redrawing the temporary figure image.

 13-28

The update point method is another abstract method defined in the Figure class and implemented in all the

concrete subclasses. For the Rectangle class, the definition is as follows:

 public void updatePoint(Point p) {

 myWidth = p.x - myStart.x;

 myHeight = p.y - myStart.y;

 }

This method receives a point from the calling program and computes the width and height of the rectangle

based on the start and end coordinates.

The user is allowed to create as many figures and they would like, in any order. Thus, myFigures is

implemented as an ArrayList, and the event-handler for the “Refresh” button is implemented as

follows.

 public void refresh() {

 for (int i = 0; i < myFigures.size(); i++) {

 myFigures.get(i).render(this);

 }

 }

This redraws all the figures using the polymorphic behavior described in the previous section.

The implementation of the Doodle figure constructed in lines 12-14 is left as an exercise for the reader.

It is implemented as an ArrayList of points signaled by the mouseDragged() method.

13.5.2. Implementing Modal Button Panels

One interesting aspect of the interface is the use of button groups. Figure 13-3 shows three button groups:

the figure buttons (i.e., rectangle, ellipse, line and doodle); the color buttons (i.e., black, red, blue and

green); and the fill status buttons (i.e., unfilled and filled). These groups are implemented so that only one

button is shown to be pressed at any time. This is used to indicate the interface’s current figure mode.

The figure button group is implemented using the following code in

SimpledrawController.java.

SimpledrawController.java

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

public class SimpledrawController extends JFrame {

 // constants...

 private JPanel buttonPanel, figureButtonPanel;

 private JButton refreshButton;

 private JToggleButton rectangleButton;

 private ButtonGroup figureButtonGroup;

 // other buttons, panels and groups...

 public SimpledrawController() throws Exception {

 setTitle("Simpledraw");

 setDefaultCloseOperation(EXIT_ON_CLOSE);

 figureButtonGroup = new ButtonGroup();

 figureButtonPanel = new JPanel();

 13-29

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

 figureButtonPanel.setBorder(

 BorderFactory.createLineBorder(Color.black));

 // other buttons and button groups...

 buttonPanel = new JPanel();

 buttonPanel.add(figureButtonPanel);

 rectangleButton = makeButton("Rectangle", figureButtonGroup,

 figureButtonPanel,

 new RectangleButtonListener());

 rectangleButton.setSelected(true);

 drawingPanel = new SimpledrawPanel("rectangle", "black", false);

 drawingPanel.init();

 add(buttonPanel, BorderLayout.NORTH);

 add(drawingPanel, BorderLayout.CENTER);

 }

 /**

 * This method constructs a new button.

 *

 * @param buttonType

 * the type of the button (e.g., "Rectangle", "Ellipse")

 - This is used to get the button's icon.

 * @param group

 * the button group in which the button should be placed

 * @param panel

 * the panel in which the button should be placed

 * @param listener

 * the action listener for the button

 * @return the new button object

 */

 private JToggleButton makeButton(String buttonType,

 ButtonGroup group, JPanel panel,

 ActionListener listener) {

 JToggleButton result = new JToggleButton(

 new ImageIcon(PATH + buttonType + ".jpg"));

 result.addActionListener(listener);

 result.setActionCommand(buttonType);

 result.setPreferredSize(DEFAULT_BUTTON_DIMENSION);

 result.setBackground(Color.white);

 group.add(result);

 panel.add(result);

 return result;

 }

 class RectangleButtonListener implements ActionListener {

 @Override

 public void actionPerformed(ActionEvent e) {

 drawingPanel.setFigureMode("rectangle");

 }

 }

 // other action listener classes and main() method here...

}

 13-30

Note the following in this code:

 All the figure buttons are constructed by makeButton() (lines 53-65), which combines the

button-creation code that is used for each of the buttons.

 makeButton() adds each button to the appropriate button group (line 62), which ensures that only

one button is shown as selected.

 makeButton() adds each button to the appropriate button panel (line 63), which ensures that the

button is displayed in the appropriate place.

 Each button listener, e.g., the RectangleButtonListener shown in lines 67-72, sets the

appropriate mode in the SimpledrawPanel class.

