

Exceptions

Writing code to

detect

 errors that may occur in the execution of class methods also requires a programmer to specify
how to

handle

 the errors. A common approach is to simply issue an error message and/or abort execution by means
of the

exit()

 function or

assert()

 function. In many cases, however, it would be better to only signal the error and
let the user of the class take appropriate action, and exceptions are designed to make this possible.

When a function detects an error, it can

throw

 an exception

, which is usually an error-message string or a class
object that conveys information to the

exception handler

, which will

catch

 the exception

 and take appropriate
action. If there is no handler for that type of exception, execution terminates. To illustrate, suppose that a class

Time

contains a

Set

 operation that accepts values for parameters

hours

,

minutes

, and

am_pm

 to be used to set data
members

myHours

,

myMinutes

, and

myAMorPM

 in the class, provided that they are valid values for a

Time

object. It they are not, the function might throw an exception as shown in the following code:

if (hours >= 1 && hours <= 12 &&
 minutes >= 0 && minutes <= 59 &&
 (am_pm == ‘A’ || am_pm == ‘P’))
{
 . . .
}
else
{
 char illegal_Time_Error[] =
 “*** Can’t set time with these values ***\n”;
 throw illegal_Time_Error;
}

A program or function that calls this function encloses the function call and associated code in a

try

 block

 of
the form

try
{
 ...

statements that may cause error

}

This is followed by one of more

catch

 blocks

, each of which specifies an exception type and contains code for han-
dling that exception. They have the form

catch(

exception_type optional_parameter_name

)
{
 ...

the exception handler

}

For example, the following code attempts to use the

Set

 operation in a

Time

 object

mealTime

 and catches the excep-
tion thrown in

Set()

:

try
{
 mealTime.Set(13, 30, ‘P’);
 cout << “This is a valid time\n”;
}

catch (char badTime[])
{
 cout << “ERROR: “ << badTime << endl;
 exit(-1);
}
cout << “Proceeding. . .\n”;

When the code in the

try

 clock is executed and no exceptions are thrown, all of the

catch

 blocks are skipped and
execution continues with the statement after the last one. If an exception is thrown, execution leaves the

try

 block
and the attached

catch

 blocks are searched for one whose parameter type matches the type of exception. If one is
found, its exception handler is executed; otherwise, the

catch

 blocks of any enclosing

try

 blocks are searched. If
none are found, execution terminates.

The types of exceptions that a function can throw can be declared by attaching an

exception specification

 of
the form

throw

(

exception_list

)

:

ReturnType Name

(

parameterlist

) throw(

exc1

,

exc2

, ...);

This function can throw only the exceptions listed and exceptions derived from them. If it attempts to do otherwise,
the function

std::unexpected()

 is called, which will terminate execution (unless

unexpected()

 is redefined by
calling

set_unexpected()

) or which will throw

bad_exception

 if

std::bad_exception

 is included in the list
of exceptions.

There are several standard exceptions provided in C++. They are listed in the following table. They are all
derived from the class

exception()

 provided in

<stdexcept>

, which in addition to member function

throw()

also has a virtual member function

what()

.

For example, by the

at

 member function of

vector

 throws an out-of-range exception if the index gets out of range.
The following code segment illustrates:

vector<int> v(4, 99);

try
{
 for (int i = 0; i < 5; i++)
 cout << v.at(i) << endl;
}
. . .
catch(out_of_range exception)
{
 cout << “Exception occurred: “
 << exception.what() << endl;
}

Standard Exceptions

Exception Thrown by

bad_alloc new()

bad_cast dynamic_cast()

bad_typeid typeid()

bad_exception

exception specification

out_of_range at()

 and

[]

 in

bitset

invalid_argument bitset

 constructor

overflow_error to_ulong()

 in

bitset

ios_base::failure ios_base::clear ()

The member function

what()

 used in the output statement returns a string describing the exception. In one version of
C++, the output produced was

99
99
99
99
Exception occurred: vector::at out of range

The statements

double * ptr;
try
{
 ptr = new double[1000000];
}

catch(bad_alloc exception)
{
 cout << “Exception occurred: “
 << exception.what() << endl;
}

produced

Exception occurred: Allocation Failure

