
PART OF THE PICTURE: Computer Architecture 1

PART OF THE PICTURE: Computer Architecture

BY WILLIAM STALLINGS

At a top level, a computer consists of processor, memory, and I/O components, with one or more modules

of each type. These components are interconnected in some fashion to achieve the main function of the

computer, which is to execute programs. Thus, there are four main structural elements:

• Processor: Controls the operation of the computer and performs its data processing func-
tions. When there is only one processor, it is often referred to as the central processing unit
(CPU).

• Main Memory: Stores data and programs. This memory is typically volatile; it is also
referred to as real memory or primary memory.

• I/O Modules: Move data between the computer and its external environment. The external
environment consists of a variety of external devices, including secondary memory devices,
communications equipment, and printers.

• System Interconnection: Some structure and mechanisms that provide for communication
among processors, main memory, and I/O modules.

Figure 1 depicts these top-level components. The processor controls operations. One of its functions is

to exchange data with memory. For this purpose, it typically makes use of two internal (to the processor)

registers: a memory address register (MAR), which specifies the address in memory for the next read or

write; and a memory buffer register (MBR), which contains the data to be written into memory or

which receives the data read from memory. Similarly, an I/O address register (I/OAR) specifies a partic-

ular I/O device. An I/O buffer register (I/OBR) is used for the exchange of data between an I/O module

and the processor.

2 PART OF THE PICTURE: Computer Architecture

A memory module consists of a set of locations, defined by sequentially numbered addresses. Each

location contains a binary number that can be interpreted as either an instruction or data. An I/O module

transfers data from external devices to processor and memory, and vice versa. It contains internal buffers

for temporarily holding this data until it can be sent on.

PROCESSOR REGISTERS
Within the processor, there is a set of registers that provide a level of memory that is faster and smaller

than main memory. The registers in the processor serve two functions:

• User-visible registers: These enable the assembly-language programmer to minimize main
memory references by optimizing the use of registers. For high-level languages, an optimiz-
ing compiler will attempt to make intelligent choices of which variables to assign to regis-
ters and which to main memory locations. Some high-level languages, such as C and C++,
allow the programmer to suggest to the compiler which variables should be held in registers.

• Control and status registers: These are used by the processor to control the operation of
the processor and by privileged, operating-system routines to control the execution of pro-
grams.

POP 6-1 Computer Components: Top-Level View

CPU Memory

MAR

MBR

PC

IR

I/O AR

I/O BR

Buffers

I/O Module

Instruction
Instruction

Data
Data
Data
Data

Instruction

PC = Program counter
IR = Instruction register
MAR = Memory address register
MBR = Memory buffer register
I/O AR = I/O address register
I/O BR = I/O buffer register

PART OF THE PICTURE: Computer Architecture 3

There is not a clean separation of registers into these two categories. For example, on some machines

the program counter is user visible, but on many it is not. For purposes of the following discussion, how-

ever, it is convenient to use these categories.

User-Visible Registers. A user-visible register is one that may be referenced by means of
the machine language that the processor executes and that is generally available to all programs,
including application programs as well as system programs. The following types of registers are
typically available: data, address, and condition codes.

Data registers can be assigned to a variety of functions by the programmer. In some cases, they are

general purpose in nature and can be used with any machine instruction that performs operations on data.

Often, however, there are restrictions. For example, there may be dedicated registers for floating-point

operations.

Address registers contain main memory addresses of data and instructions, or they contain a portion

of the address that is used in the calculation of the complete address. These registers may themselves be

somewhat general purpose, or they may be devoted to a particular addressing mode. Examples include:

• Index register: Indexed addressing is a common mode of addressing that involves adding
an index to a base value to get the effective address.

• Segment pointer: With segmented addressing, memory is divided into variable-length
blocks of words called segments. A memory reference consists of a reference to a particular
segment and an offset within the segment; this mode of addressing is important in memory
management. In this mode of addressing, a register is used to hold the address of the base
(starting location) of the segment. There may be multiple registers; for example, one for the
operating system (i.e., when operating-system code is executing on the processor) and one
for the currently executing application.

• Stack pointer: If there is user-visible stack addressing, then typically the stack is in main
memory and there is a dedicated register that points to the top of the stack. This allows the
use of instructions that contain no address field, such as push and pop.

A final category of registers, which is at least partially visible to the user, holds condition codes (also

referred to as flags). Condition codes are bits set by the processor hardware as the result of operations. For

example, an arithmetic operation may produce a positive, negative, zero, or overflow result. In addition to

the result itself being stored in a register or memory, a condition code is also set. The code may subse-

quently be tested as part of a conditional branch operation.

Condition code bits are collected into one or more registers. Usually, they for m part of a control reg-

ister. Generally, machine instructions allow these bits to be read by implicit reference, but they cannot be

altered by the programmer.

Control and Status Registers. There are a variety of processor registers that are
employed to control the operation of the processor. Most of these, on most machines, are not vis-
ible to the user. Some of them may be accessible by machine instructions executed in a control

4 PART OF THE PICTURE: Computer Architecture

or operating-system mode.

Of course, different machines will have different register organizations and use different terminology.

We will list common register types, with a brief description.

In addition to the MAR, MBR, IOAR, and IOBR registers mentioned earlier, the following are essen-

tial to instruction execution:

• Program counter (PC): Contains the address of an instruction to be fetched.

• Instruction register (IR): Contains the instruction most recently fetched.

All processor designs also include a register or set of registers, often known as the program status

word (PSW), which contains status information. The PSW typically contains condition codes plus other

status information. Common fields and flags include the following:

• Sign: Contains the sign bit of the last arithmetic operation.

• Zero: Set when the result of an arithmetic operation is zero.

• Carry: Set if an operation resulted in a carry (addition) into or borrow (subtraction) out of a
high-order bit. Used for multi-word arithmetic operations.

• Equal: Set if a logical compare result is equality.

• Overflow: Used to indicate arithmetic overflow.

• Interrupt Enable/Disable: Used to disable or enable interrupts. When interrupts are dis-
abled, the processor ignores them. This is often desirable when the operating system is in
the midst of dealing with another interrupt.

• Supervisor: Indicates whether the processor is executing in supervisor or user mode. Cer-
tain privileged instructions can be executed only in supervisor mode, and certain areas of
memory can be accessed only in supervisor mode.

There are a number of other registers related to status and control that might be found in a particular

processor design. In addition to the PSW, there may be a pointer to a block of memory containing addi-

tional status information. In machines using multiple types of interrupts, a set of registers may be pro-

vided, with one pointer to each interrupt-handling routine. If a stack is used to implement certain

functions (e.g., procedure call), then a system stack pointer is needed. Memory management hardware

requires dedicated registers. Finally, registers may be used in the control of I/O operations.

A number of factors go into the design of the control and status register organization. One key issue is

operating system support. Certain types of control information are of specific utility to the operating sys-

tem. If the processor designer has a functional understanding of the operating system to be used, then the

register organization can to some extent be tailored to the operating system.

Another key design decision is the allocation of control information between registers and memory. It

is common to dedicate the first (lowest) few hundred or thousand words of memory for control purposes.

The designer must decide how much control information should be in more expensive, faster registers

and how much in less expensive, slower main memory.

PART OF THE PICTURE: Computer Architecture 5

INSTRUCTION EXECUTION
The basic function performed by a computer is program execution. The program to be executed consists

of a set of instructions stored in memory. The processor does the actual work by executing instructions

specified in the program.

The simplest point of view is to consider instruction processing as consisting of two steps: The proces-

sor reads (fetches) instructions from memory one at a time, and executes each instruction. Program exe-

cution consists of repeating the process of instruction fetch and instruction execution. The instruction

execution may involve several operations and depends on the nature of the instruction.

The processing required for a single instruction is called an instruction cycle . In simple terms, the

instruction cycle consists of a fetch cycle , in which the processor reads an instruction from memory, and

the execute cycle , in which the processor executes the instruction. This instruction cycle is performed

repeatedly.

INSTRUCTION FETCH AND EXECUTE
At the beginning of each instruction cycle, the processor fetches an instruction from memory. In a typical

processor, a register called the program counter (PC) is used to keep track of which instruction is to be

fetched next. Unless told otherwise, the processor always increments the PC after each instruction fetch

so that it will fetch the next instruction in sequence (i.e., the instruction located at the next higher memory

address). So, for example, consider a computer in which each instruction occupies one 16-bit word of

memory. Assume that the program counter is set to word location 300. The processor will next fetch the

instruction at location 300. On succeeding instruction cycles, it will fetch instructions from locations 301,

302, 303, and so on. This sequence may be altered, as explained presently.

The fetched instruction is loaded into a register in the processor known as the instruction register

(IR). The instruction is in the form of a binary code that specifies what action the processor is to take. The

processor interprets the instruction and performs the required action. In general, these actions fall into

four categories:

• Processor-memory: Data may be transferred from processor to memory or from memory
to processor.

• Processor-I/O: Data may be transferred to or from a peripheral device by transferring
between the processor and an I/O module.

• Data processing: The processor may perform some arithmetic or logic operation on data.

• Control: An instruction may specify that the sequence of execution be altered. For exam-
ple, the processor may fetch an instruction from location 149, which specifies that the next
instruction be from location 182. The processor will remember this fact by setting the pro-
gram counter to 182. Thus, on the next fetch cycle, the instruction will be fetched from loca-
tion 182 rather than 150.

6 PART OF THE PICTURE: Computer Architecture

Of course, an instruction’s execution may involve a combination of these actions.

Let us consider a simple example using a hypothetical machine that includes the characteristics listed

in Figure 2. The processor contains a single data register, called an accumulator (AC). Both instructions

and data are 16 bits long. Thus it is convenient to organize memory using 16-bit locations, or words. The

instruction format provides four bits for the opcode; thus there can be as many as 24 = 16 different

opcodes, and up to 212 = 4,096 (4K) words of memory can be directly addressed.

Figure 3 illustrates a partial program execution, showing the relevant portions of memory and proces-

sor registers. The program fragment shown adds the contents of the memory word at address 940 to the

contents of the memory word at address 941 and stores the result in the latter location. Three instructions,

which can be described as three fetch and three execute cycles, are required:

1.The program counter (PC) contains 300, the address of the first instruction. This address is loaded

into the instruction register (IR). Note that this process would involve the use of a memory address

register (MAR) and a memory buffer register (MBR). For simplicity, these intermediate registers are

ignored.

2. The first 4 bits in the IR indicate that the accumulator (AC) is to be loaded. The remaining 12 bits

specify the address, which is 940.

3.After the load is complete, the PC is incremented and the next instruction is fetched.

4.The old contents of the AC and the contents of location 941 are added and the result is stored in the

POP 6-2 Characteristics of a Hypothetical Machine

0 3 4
Op Code Address

15

(a) Instruction format

0 1

S Magnitude
15

(b) Integer format

(c) Internal CPU registers

(d) Partial list of opcodes

Program Counter (PC) = Address of instruction
Instruction Register (IR) = Instruction being executed
Accumulator (AC) = Temporary storage

0001 = Load AC from Memory
0010 = Store AC to Memory
0101 = Add to AC from Memory

PART OF THE PICTURE: Computer Architecture 7

AC.

5.The PC is incremented and the next instruction is fetched.

The contents of the AC are stored in location 941.

In this example, three instruction cycles, each consisting of a fetch cycle and an execute cycle, are

needed to add the contents of location 940 to the contents of 941. With a more complex set of instruc-

tions, fewer cycles would be needed. Most modern processors include instructions that contain more than

one address. Thus the execution cycle for a particular instruction may involve more than one reference to

memory. Also, instead of memory references, an instruction may specify an I/O operation.

I/O FUNCTION
An I/O module (e.g., a disk controller) can exchange data directly with the processor. Just as the proces-

sor can initiate a read or write with memory, designating the address of a specific location, the processor

can also read data from or write data to an I/O module. In this latter case, the processor identifies a spe-

cific device that is controlled by a particular I/O module. Thus, an instruction sequence similar in form to

that of Figure 3 could occur, with I/O instructions rather than memory-referencing instructions.

8 PART OF THE PICTURE: Computer Architecture

In some cases, it is desirable to allow I/O exchanges to occur directly with memory. In such a case, the

processor grants to an I/O module the authority to read from or write to memory, so that the I/O-memory

transfer can occur without tying up the processor. During such a transfer, the I/O module issues read or

write commands to memory, relieving the processor of responsibility for the exchange. This operation is

known as direct memory access (DMA).

THE MEMORY HIERARCHY
The design constraints on a computer’s memory can be summed up by three questions: How much? How

fast? How expensive?

The question of how much is somewhat open-ended. If the capacity is there, applications will likely be

POP 6-3 Example of Program Execution

1 9 4 0
5 9 4 1

3 0 0

2 9 4 1 1 9 4 0

Memory CPU Registers

300

302
301

0 0 0 3
0 0 0 2

940
941

PC

IR
AC

Step 1

1 9 4 0
5 9 4 1 0 0 0 3

3 0 0

2 9 4 1 1 9 4 0

Memory CPU Registers

300

302
301

0 0 0 3
0 0 0 2

940
941

PC

IR
AC

Step 2

1 9 4 0
5 9 4 1 0 0 0 3

3 0 1

2 9 4 1 5 9 4 1

Memory CPU Registers

300

302
301

0 0 0 3
0 0 0 2

940
941

PC

IR
AC

Step 3

1 9 4 0
5 9 4 1 0 0 0 5

3 0 1

2 9 4 1 5 9 4 1

Memory CPU Registers

300

302
301

0 0 0 3
0 0 0 2

940
941

PC
AC

Step 4

1 9 4 0
5 9 4 1 0 0 0 5

3 0 2

2 9 4 1 2 9 4 1

Memory CPU Registers

300

302
301

0 0 0 3
0 0 0 2

940
941

PC

IR
AC

Step 5

1 9 4 0
5 9 4 1 0 0 0 5

3 0 2

2 9 4 1 2 9 4 1

Memory CPU Registers

300

302
301

0 0 0 3
0 0 0 5

940
941

PC

IR
AC

Step 6

3 + 2 = 5

IR

..
.

..
.

..
.

..
.

..
.

..
.

PART OF THE PICTURE: Computer Architecture 9

developed to use it. The question of how fast is, in a sense, easier to answer. To achieve greatest perfor-

mance, the memory must be able to keep up with the processor. That is, as the processor is executing

instructions, we would not want it to have to pause waiting for instructions or operands. The final ques-

tion must also be considered. For a practical system, the cost of memory must be reasonable in relation-

ship to other components.

As might be expected, there is a trade-off among the three key characteristics of memory: namely

cost, capacity, and access time. At any given time, a variety of technologies are used to implement mem-

ory systems. Across this spectrum of technologies, the following relationships hold:

• Smaller access time, greater cost per bit

• Greater capacity, smaller cost per bit

• Greater capacity, greater access time

The dilemma facing the designer is clear. The designer would like to use memory technologies that

provide for large-capacity memory, both because the capacity is needed and because the cost per bit is

low. However, to meet performance requirements, the designer needs to use expensive, relatively lower-

capacity memories with fast access times.

The way out of this dilemma is not to rely on a single memory component or technology, but to

employ a memory hierarchy. A traditional hierarchy is illustrated in Figure 4. As one goes down the

hierarchy, the following occur:

(a) Decreasing cost/bit

(b) Increasing capacity

(c) Increasing access time

(d)Decreasing frequency of access of the memory by the processor

Thus, smaller, more expensive, faster memories are supplemented by larger, cheaper, slower memo-

ries. By employing a variety of technologies, a spectrum of memory systems exist that satisfy conditions

(a) through (c). Fortunately, condition (d) is also generally valid.

The basis for the validity of condition (d) is a principle known as locality of reference . During the

course of execution of a program, memory references by the processor, for both instructions and data,

tend to cluster. Programs typically contain a number of iterative loops and subroutines. Once a loop or

subroutine is entered, there are repeated references to a small set of instructions. Similarly, operations on

tables and arrays involve access to a clustered set of data words. Over a long period of time, the clusters in

use change, but over a short period of time, the processor is primarily working with fixed clusters of

memory references.

10 PART OF THE PICTURE: Computer Architecture

Accordingly, it is possible to organize data across the hierarchy such that the percentage of accesses to

each successively lower level is substantially less than that of the level above. Consider a simple two-level

memory. Let Level 2 memory contain all program instructions and data. The current clusters can be tem-

porarily placed in Level 1. From time to time, one of the clusters in Level 1 will have to be swapped back

to Level 2 to make room for a new cluster coming in to Level 1. On average, however, most references

will be to instructions and data contained in Level 1.

This principle can be applied across more than two levels of memory. Consider the hierarchy shown in

Figure 4. The fastest, smallest, and most expensive type of memory consists of the registers internal to the

processor. Typically, a processor will contain a few dozen such registers, although some machines contain

hundreds of registers. Skipping down two levels, main memory, also referred to as real memory, is the

principal internal memory system of the computer. Each location in main memory has a unique address,

and most machine instructions refer to one or more main memory addresses. Main memory is usually

extended with a higher-speed, smaller cache. The cache is not usually visible to the programmer or,

indeed, to the processor. It is a device for staging the movement of data between main memory and pro-

cessor registers to improve performance.

The three forms of memory just described are, typically, volatile and employ semiconductor technol-

ogy. The use of three levels exploits the fact that semiconductor memory comes in a variety of types,

which differ in speed and cost. Data are stored more permanently on external mass storage devices, of

which the most common are hard disk and removable media, such as removable disk, tape, and optical

storage. External, nonvolatile memory is also referred to as secondary or auxiliary memory . These are

POP 6-4 The Memory Hierarchy

Registers

Cache

Main Memory

Magnetic Disk

Removable Media

PART OF THE PICTURE: Computer Architecture 11

used to store program and data files and are usually visible to the programmer only in terms of files and

records, as opposed to individual bytes or words. Disk is also used to provide an extension to main mem-

ory known as virtual storage or virtual memory .

INPUT/OUTPUT ORGANIZATION
In addition to one or more processors and a set of memory modules, the third key element of a computer

system is a set of I/O modules. Each module interfaces to the system bus or other interconnection struc-

ture and controls one or more external devices. An I/O module is not simply mechanical connectors that

wire a device into the system bus. Rather, the I/O module contains some “intelligence,” that is, it contains

logic for controlling the flow of data between the external device and the bus.

An I/O module has two major functions:

• Interface to the processor and memory via the system bus or other interconnection structure.
• Interface to one or more external devices by tailored data links.

I/O MODULE FUNCTION
The major functions or requirements for an I/O module fall into the following categories:

• Control and timing
• Communication with processor
• Communication with external device
• Data buffering
• Error detection

During any period of time, the processor may communicate with one or more external devices in

unpredictable patterns, depending on the program’s need for I/O. The internal resources, such as main

memory and the system bus, must be shared among a number of activities, including I/O. Thus, the I/O

function includes a control and timing requirement, to coordinate the flow of traffic between internal

resources and external devices. For example, the control of the transfer of data from an external device to

the processor might involve the following sequence of steps:

1. The processor interrogates the I/O module to check the status of the attached device.

2. The I/O module returns the device status.

3. If the device is operational and ready to transmit, the processor requests the transfer of data, by means

of a command to the I/O module.

4. The I/O module obtains a unit of data (e.g., 8 or 16 bits) from the external device.

The data are transferred from the I/O module to the processor.

If the system employs a bus, then each of the interactions between the processor and the I/O module

12 PART OF THE PICTURE: Computer Architecture

involves one or more bus events.

The preceding simplified scenario also illustrates that the I/O module must have the capability to

engage in communication with the processor and with the external device. Communication with the

processor involves:

• Command decoding: The I/O module accepts commands from the processor. These com-
mands are generally sent as signals on the control bus. For example, an I/O module for a
disk drive might accept the following commands: READ SECTOR, WRITE SECTOR,
SEEK track number, and SCAN record ID. The latter two commands each include a param-
eter that is sent on the data bus.

• Data: Data are exchanged between the processor and the I/O module over the data bus.

• Status reporting: Because peripherals are so slow, it is important to know the status of the
I/O module. For example, if an I/O module is asked to send data to the processor (read), it
may not be ready to do so because it is still working on the previous command. This fact can
be reported with a status signal. Common status signals are BUSY and READY. There may
also be signals to report various error conditions.

• Address recognition: Just as each word of memory has an address, so does each I/O
device. Thus, an I/O module must recognize one unique address for each peripheral it con-
trols.

On the other side, the I/O module must be able to communicate with external devices. This commu-

nication also involves commands, status information, and data.

An essential task of an I/O module is data buffering. Whereas the transfer rate into and out of main

memory or the processor is quite high, the rate is orders of magnitude lower for most peripheral devices.

Data coming from main memory are sent to an I/O module in a rapid burst. The data are buffered in the I/

O module and then sent to the external device at its data rate. In the opposite direction, data are buffered

so as not to tie up the memory in a slow transfer operation. Thus, the I/O module must be able to operate

at both device and memory speeds.

Finally, an I/O module is often responsible for error detection and for subsequently reporting errors

to the processor. One class of errors includes mechanical and electrical malfunctions reported by the

device (e.g., paper jam, bad disk track). Another class consists of unintentional changes to the bit pattern

as it is transmitted from device to I/O module. Some form of error-detecting code is often used to detect

transmission errors. A common example is the use of a parity bit on each character of data. For example,

the ASCII character occupies 7 bits of a byte. The eighth bit is set so that the total number of 1s in the

byte is even (even parity) or odd (odd parity). When a byte is received, the I/O module checks the parity

to determine whether an error has occurred.

PART OF THE PICTURE: Computer Architecture 13

TO PROBE FURTHER
The topics in this section are covered in detail in Computer Organization and Architecture: Designing for

Performance, Fourth Edition, by William Stallings (Prentice Hall, 1996). Links to web sites with further

information can be found at http://www.shore.net/ ws/COA4e.

