
 
 
Boolean Logic and Digital Design 

 
The arithmetic operations performed by the CPU must be carried out using special 

electrical circuits called logic circuits that are used to implement boolean (or digital) 

logic in hardware. Here we investigate the design of such circuits, which is one small 

part of the broader area of computer architecture. 
 
 

EARLY WORK 
The foundations of circuit design were laid in the early 1900s by the English 

mathematician George Boole, after whom the C++ bool type is named. Boole 

formalized several axioms of logic, resulting in an algebra for writing logical 

expressions, which have since come to be known as boolean expressions.  

In C++ syntax, some of the basic axioms of boolean logic are given in the following 

table.  In the statements of these laws, the symbol ≡ denotes "is equivalent to." A 

statement of the form p ≡ q  means that p and q always have the same truth values 

(true or false). 

 

 The Relational Laws  

1a. !(X == Y) &   (X != Y) 1b. !(X != Y) &   (X == Y) 

2a. !(X < Y) &   (X >= Y) 2b. !(X >= Y) &   (X < Y) 

3a. !(X > Y) &   (X <= Y) 3b. !(X <= Y) &   (X > Y) 

 

 

 

 

The Boolean Laws   

4a. X || false &   X 4b. X && false &   false 

5a. X || true &   true 5b. X && true &   X 

 Idempotent Laws   

6a. X || X &   X 6b. X && X &   X 

 

 

 

 



 
 
 
 
 
 

 Involution Law  

7a. !(!X) &   X 

 Laws of Complementarity 

8a. X || (!X) &   true 8b. X && (!X) &   false 

 Commutative Laws   

9a. X || Y &   Y || X 9b. X && Y &   Y && X 

 Associative Laws   

10a. (X || Y) || Z &   X || (Y 
|| Z) 

10b. (X && Y) && Z &   X && (Y 
&& Z) 

 Distributive Laws   

11a. X && (Y || Z) & 11b. X || (Y && Z) & 

 (X && Y) || (X && Z)  (X || Y) && (X || Z) 

 Simplification Theorems   

12a. (X && Y) || (X && !Y) &   
X 

12b. (X || Y) && (X || !Y) &   
X 

13a. X || (X && Y) &   X 13b. X && (X || Y) &   X 

14a. (X || !Y) && Y &   X && Y 14b. (X && !Y) || Y &   X || Y 

 DeMorgan's Laws   

15a. !(X && Y) &   !X || !Y 15b. !(X || Y) &   !X && !Y 

 
 

     It is especially useful for programmers to know DeMorgan’s Laws because they can 

simplify complicated boolean expressions. As a simple illustration, suppose that done 

and error are bool objects, and consider the following if statement: 

 

if (!done && !error) 

// ... do something... 

 

DeMorgan’s law tells us that the boolean expression involving two negated values, 

 
!done && !error 

 



 
can be simplified to 

!(done || error)  

The original expression contained 2 NOT operations and 1 AND operation, but the 

simplified expression contains only 1 NOT operation and 1 OR operation—1 less 

operation. Applying DeMorgan’s law repeatedly to a boolean expression of the form 
 

!b1 && !b2 && ... && !bn 
 
containing n NOTs and n – 1 ANDs, gives the simpler expression 

 
!(b1 || b2 || ... || bn) 

 
containing only 1 NOT and n – 1 ORs. The complexity of the expression is thus 

reduced by n – 1 NOToperations, which can result in a significant increase in 

performance. 
 

DIGITAL CIRCUITS 
With the invention of the digital computer in the late 1930s, the work of Boole 

moved from obscurity to prominence. The axioms and theorems of his boolean 

algebra became extremely important as mathematicians, engineers, and physicists 

sought to build the arithmetic and logic circuitry of the early computers. These 

circuits utilize three basic electronic components: the AND gate, the OR gate, and 

the NOT gate or inverter, whose symbols are as follows: 
 
 
 
 
 

AND  gate  OR gate  inverter 
 

The inputs to these gates are electrical voltages, where a voltage that exceeds a 
certain threshold value is interpreted as 1 (i.e., true), and a voltage below that 
threshold is interpreted as 0 (i.e., false). In the case of an AND gate, a 1 is produced 
only when there are 1s on both input lines. An OR gate produces a 1 only when 
there is a 1 on at least one of the input lines. The output of a NOT gate is the 
opposite of its input. Because these three components behave in the same fashion 
as the AND, OR, and NOT operators from boolean algebra, a circuit can be 
constructed to represent any boolean expression, and boolean expressions can be 
used to design circuits! 
 
 



CIRCUIT DESIGN: A BINARY HALF-ADDER 
To illustrate, consider the problem of adding two binary digits digit1 and 
digit2. The truth table below summarizes the behavior of the addition operation, 
which produces two results—a sum bit and a carry bit: 

 
digit1 digit2 carry sum 

0 

0 

1 
1 

0 

1 

0 
1 

0 

0 

0 
1 

0 

1 

1 
0 

 
 

There are two important things to note: 
 

1. The carry output is 1 (true) only when digit1 and digit2 are both 1 (true) 

2. The sum output is 1 (true) only when digit1 is 0 (false) and digit2 is 1 (true), or 
when digit1 is 1 (true) and digit2 is 0 (false) 

 
It is easy to see that we can represent these outputs by the following pair of boolean 

expressions: 

bool carry = digit1 && digit2, 
 sum = (!digit1 && digit2) || (digit1 && !digit2); 

 
The expression for sum has the form (!A && B) || (A && !B) and can be 

simplified by applying the axioms from boolean logic as follows: 
 

(!A && B) || (A && !B) 
↓ (Apply 9a to switch two operands of ||) 
 

(A && !B) || (!A && B) 
↓  (Apply 11b with X = (A && !B), Y = !A, Z = B) 
 

 ((A && !B) || !A) && ((A && !B) || B)) 
↓ (Apply 14b to second expression with X = A and Y = B) 
 

 ((A && !B) || !A) && (A || B) 
↓ (Apply 9a to switch two operands of first &&) 
 

 ((!B && A) || !A) && (A || B) 
↓ (Apply 14b to first expression with X = !B and Y = !A) 
 

 (!B || !A) && (A || B) 
↓ (Apply 15a to first || expression with X = B and Y = A) 
 

!(B && A) && (A || B) 
↓ (Apply 9a to switch two operands of first &&) 
 

!(A && B) && (A || B) 
↓ (Apply 9a to switch two operands of second &&) 
 

 (A || B) && !(A && B) 
 



 
 
 
 
This means that the boolean expression for sum can be rewritten as 

 
sum = (digit1 || digit2) && !(digit1 && digit2); 

 
which has one less NOT operation than the original expression. 

This may seem like a lot of work for not much improvement. On the contrary, 

this simplification means that a circuit for this expression will require one less 

inverter than a circuit for the original expression and will therefore be less expensive 

to manufacture. If half-adders are mass-produced, then this circuit may be 

manufactured millions of times with a savings that is millions of times the cost of an 

inverter! 

Using the boolean expressions 

 
bool carry = digit1 && digit2, 

 

for sum and carry, we can design the following circuit, called a binary half-

adder, that adds two binary digits: 
 
 
 

 
 

 
 
 
 
 
 
 

It accepts two inputs, digit1 and  digit2, and produces two outputs, sum and 

carry.  

As demonstrated in  Example 5.3 in the textbook, once a boolean expression is 

found to represent a circuit, it is easy to write a simple program to check its 

behavior.  
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