

Boolean Logic and Digital Design

The arithmetic operations performed by the CPU must be carried out using special

electrical circuits called logic circuits that are used to implement boolean (or digital)

logic in hardware. Here we investigate the design of such circuits, which is one small

part of the broader area of computer architecture.

EARLY WORK
The foundations of circuit design were laid in the early 1900s by the English

mathematician George Boole, after whom the C++ bool type is named. Boole

formalized several axioms of logic, resulting in an algebra for writing logical

expressions, which have since come to be known as boolean expressions.

In C++ syntax, some of the basic axioms of boolean logic are given in the following

table. In the statements of these laws, the symbol ≡ denotes "is equivalent to." A

statement of the form p ≡ q means that p and q always have the same truth values

(true or false).

 The Relational Laws

1a. !(X == Y) & (X != Y) 1b. !(X != Y) & (X == Y)

2a. !(X < Y) & (X >= Y) 2b. !(X >= Y) & (X < Y)

3a. !(X > Y) & (X <= Y) 3b. !(X <= Y) & (X > Y)

The Boolean Laws

4a. X || false & X 4b. X && false & false

5a. X || true & true 5b. X && true & X

 Idempotent Laws

6a. X || X & X 6b. X && X & X

 Involution Law

7a. !(!X) & X

 Laws of Complementarity

8a. X || (!X) & true 8b. X && (!X) & false

 Commutative Laws

9a. X || Y & Y || X 9b. X && Y & Y && X

 Associative Laws

10a. (X || Y) || Z & X || (Y
|| Z)

10b. (X && Y) && Z & X && (Y
&& Z)

 Distributive Laws

11a. X && (Y || Z) & 11b. X || (Y && Z) &

 (X && Y) || (X && Z) (X || Y) && (X || Z)

 Simplification Theorems

12a. (X && Y) || (X && !Y) &
X

12b. (X || Y) && (X || !Y) &
X

13a. X || (X && Y) & X 13b. X && (X || Y) & X

14a. (X || !Y) && Y & X && Y 14b. (X && !Y) || Y & X || Y

 DeMorgan's Laws

15a. !(X && Y) & !X || !Y 15b. !(X || Y) & !X && !Y

 It is especially useful for programmers to know DeMorgan’s Laws because they can

simplify complicated boolean expressions. As a simple illustration, suppose that done

and error are bool objects, and consider the following if statement:

if (!done && !error)

// ... do something...

DeMorgan’s law tells us that the boolean expression involving two negated values,

!done && !error

can be simplified to

!(done || error)

The original expression contained 2 NOT operations and 1 AND operation, but the

simplified expression contains only 1 NOT operation and 1 OR operation—1 less

operation. Applying DeMorgan’s law repeatedly to a boolean expression of the form

!b1 && !b2 && ... && !bn

containing n NOTs and n – 1 ANDs, gives the simpler expression

!(b1 || b2 || ... || bn)

containing only 1 NOT and n – 1 ORs. The complexity of the expression is thus

reduced by n – 1 NOToperations, which can result in a significant increase in

performance.

DIGITAL CIRCUITS
With the invention of the digital computer in the late 1930s, the work of Boole

moved from obscurity to prominence. The axioms and theorems of his boolean

algebra became extremely important as mathematicians, engineers, and physicists

sought to build the arithmetic and logic circuitry of the early computers. These

circuits utilize three basic electronic components: the AND gate, the OR gate, and

the NOT gate or inverter, whose symbols are as follows:

AND gate OR gate inverter

The inputs to these gates are electrical voltages, where a voltage that exceeds a
certain threshold value is interpreted as 1 (i.e., true), and a voltage below that
threshold is interpreted as 0 (i.e., false). In the case of an AND gate, a 1 is produced
only when there are 1s on both input lines. An OR gate produces a 1 only when
there is a 1 on at least one of the input lines. The output of a NOT gate is the
opposite of its input. Because these three components behave in the same fashion
as the AND, OR, and NOT operators from boolean algebra, a circuit can be
constructed to represent any boolean expression, and boolean expressions can be
used to design circuits!

CIRCUIT DESIGN: A BINARY HALF-ADDER
To illustrate, consider the problem of adding two binary digits digit1 and
digit2. The truth table below summarizes the behavior of the addition operation,
which produces two results—a sum bit and a carry bit:

digit1 digit2 carry sum

0

0

1
1

0

1

0
1

0

0

0
1

0

1

1
0

There are two important things to note:

1. The carry output is 1 (true) only when digit1 and digit2 are both 1 (true)

2. The sum output is 1 (true) only when digit1 is 0 (false) and digit2 is 1 (true), or
when digit1 is 1 (true) and digit2 is 0 (false)

It is easy to see that we can represent these outputs by the following pair of boolean

expressions:

bool carry = digit1 && digit2,
 sum = (!digit1 && digit2) || (digit1 && !digit2);

The expression for sum has the form (!A && B) || (A && !B) and can be

simplified by applying the axioms from boolean logic as follows:

(!A && B) || (A && !B)
↓ (Apply 9a to switch two operands of ||)

(A && !B) || (!A && B)
↓ (Apply 11b with X = (A && !B), Y = !A, Z = B)

 ((A && !B) || !A) && ((A && !B) || B))
↓ (Apply 14b to second expression with X = A and Y = B)

 ((A && !B) || !A) && (A || B)
↓ (Apply 9a to switch two operands of first &&)

 ((!B && A) || !A) && (A || B)
↓ (Apply 14b to first expression with X = !B and Y = !A)

 (!B || !A) && (A || B)
↓ (Apply 15a to first || expression with X = B and Y = A)

!(B && A) && (A || B)
↓ (Apply 9a to switch two operands of first &&)

!(A && B) && (A || B)
↓ (Apply 9a to switch two operands of second &&)

 (A || B) && !(A && B)

This means that the boolean expression for sum can be rewritten as

sum = (digit1 || digit2) && !(digit1 && digit2);

which has one less NOT operation than the original expression.

This may seem like a lot of work for not much improvement. On the contrary,

this simplification means that a circuit for this expression will require one less

inverter than a circuit for the original expression and will therefore be less expensive

to manufacture. If half-adders are mass-produced, then this circuit may be

manufactured millions of times with a savings that is millions of times the cost of an

inverter!

Using the boolean expressions

bool carry = digit1 && digit2,

for sum and carry, we can design the following circuit, called a binary half-

adder, that adds two binary digits:

It accepts two inputs, digit1 and digit2, and produces two outputs, sum and

carry.

As demonstrated in Example 5.3 in the textbook, once a boolean expression is

found to represent a circuit, it is easy to write a simple program to check its

behavior.

sum

carry

digit1

digit2

