
57 Chapter 2 Introduction to Abstract Data Types

significant digits.

The accumulation of roundoff errors in a chain of calculations may be so large that the

result of the calculations is far from the correct value, which can lead to serious consequences. A

real-world example of this is the Patriot missile failure described in Section 1.4. A Patriot mis-

sile battery in Dharan, Saudi Arabia, failed to intercept a Scud missile during the Gulf War in

1991 with the result that 28 American soldiers were killed and 98 were injured. The cause of the

failure was identified as an inaccurate calculation of the elapsed time since start-up due to round-

off errors of the kind we just described. Specifically, the time measured by the system clock was

multiplied by 0.1 to produce the time in tenths of seconds. Like most decimal fractions, the

binary representation of 0.1 does not terminate:

(0.0001100110011001100110011001100110011 . . .)2

The 24-bit register in the Patriot stored only an approximation to this number,

(0.00011001100110011001100)2

which is in error by approximately 0.000000095. The system had been running for 100 hours

and during this time, the roundoff errors had accumulated to more than 0.34 seconds. During

this time a Scud missile traveling approximately 5550 feet per second could travel about 1890

feet, which means that the calculated distance to the missile could be off by 1/3 mile.

We must remember that roundoff errors do occur and be careful with the code we write so

they do not cause a program to fail. For example, if we need to calculate and display some y

coordinates given by function values at points on the x axis from 0 to 5 that are 0.1 units apart,

we should not write a loop like the following:

for (double x = 0; x != 5.0; x += 0.1)

{

 y = f(x);

 cout << "x = " << x << "\t y = " << y << endl;

}

The roundoff error in the internal representation of 0.1 will accumulate in the computed values

of x so that they will never be exactly equal to 5.0; the result is an infinite loop! Instead of this

loop with x != 5.0 as the loop condition, we should write

for (double x = 0; x <= 5.0; x += 0.1)

{

 y = f(x);

 cout << "x = " << x << "\t y = " << y << endl;

}

so that repetition will terminate as soon as the value of x exceeds 5.0. This example shows that

care must be taken when comparing two real values with the relational operators == and !=.

