VII. Algorithm Complexity (Chap. 7)

Measuring the Efficiency of Algorithms: (§ 7.4)

1. What to measure?

Space utilization: amount of memory required

Time efficiency: amount of time required to process the data.

— Depends on many factors: size of input, speed of machine, quality of source code, quality of compiler.

Since most of these factors vary from one machine/compiler to another, we count the <u>number of times instructions are executed</u>. Thus, we measure computing time as:

T(n) = the computing time of an algorithm for input of size n = the number of times the instructions are executed.

- 2. Example: See ALGORITHM TO CALCULATE MEAN on page 350
 - /* Algorithm to find the mean of *n* real numbers.
 Receive: An integer *n* 1 and an array *x*[0], ..., *x*[*n*-1] of real numbers
 Return: The mean of *x*[0], ..., *x*[*n*-1]
 - 1. Initialize sum to 0.
 - 2. Initialize index variable i to 0.
 - 3. While i < n do the following:
 - 4. a. Add x[i] to sum.
 - 5. b. Increment i by 1.
 - 6. Calculate and return mean = sum / n.

T(n) = 3n + 4

3. <u>Definition of "big-O notation</u>: The computing time of an algorithm is said to have *order of magnitude* f(n), written T(n) is O(f(n))

if there is some constant C such that

T(n) C·f(n) for all sufficiently large values of n.

We also say, the *complexity* of the algorithm is O(f(n)).

Example: For the Mean-Calculation Algorithm: T(n) is O(n)

4. The arrangement of the input items may affect the computing time. For example, it may take more time to sort a list of element that are nearly in order than for one that are completely out of order. We might measure it in the *best case* or in the *worst case* or try for the *average*. Usually best-case isn't very informative, average-case is too difficult to calculate; so we usually measure worst-case performance.

- 5. Example:
- a. LINEAR SEARCH ALGORITHM on p. 354
 - /* Algorithm to perform a linear search of the list a[0], ..., a[n-1].
 Receive: An integer n and a list of n elements stored in array elements a[0], ..., a[n-1], and *item* of the same type as the array elements.
 Return: found = true and loc = position of item if the search is successful; otherwise, found is false.
 - 1. Set found =false.
 - 2. Set loc = 0.
 - 3. While *loc* < *n* and not *found* do the following:
 - 4. If *item* = a[loc] then // *item* found
 - 5. Set *found* = true.
 - 6. Else // keep searching *) Increment *loc* by 1.

Worst case: Item not in the list: $T_L(n)$ is O(n)

b. BINARY SEARCH ALGORITHM on p. 355

- /* Algorithm to perform a binary search of the list $a[0], \ldots, a[n-1]$ in which the items are in ascending order.
 - Receive: An integer *n* and a list of *n* elements in ascending order stored in array elements $a[0], \ldots, a[n-1]$, and *item* of the same type as the array elements.
 - Return: *found* = true and *loc* = position of *item* if the search is successful; otherwise, *found* is false.

```
-----*/
```

```
1. Set found = false.
```

2. Set first = 0.

```
3. Set last = n - 1.
```

- 4. While *first < last* and not *found* do the following:
- 5. Calculate loc = (first + last) / 2.
- 6. If *item* < a[loc] then
- 7. Set last = loc 1. // search first half
- 8. Else if *item* > a[loc] then
- 9. Set first = loc + 1. // search last half
- 10. Else

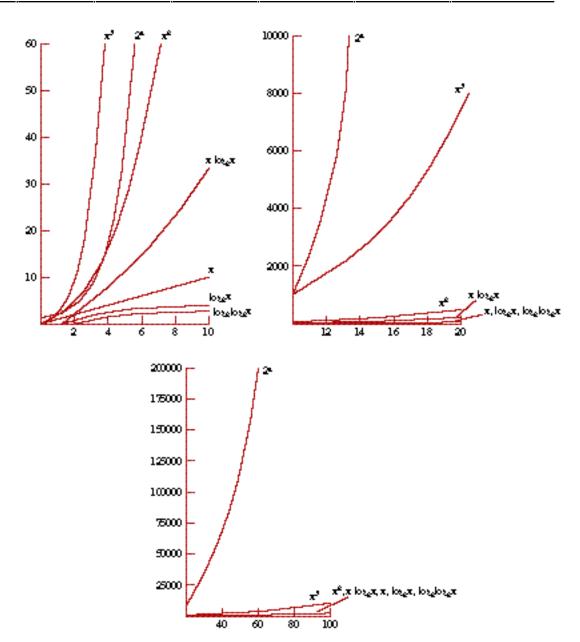
```
Set found = true. // item found
```

Worst case: Item not in the list: $T_B(n) = O(\log_2 n)$ 6. Commonly-used computing times:

 $O(\log_2 \log_2 n)$, $O(\log_2 n)$, O(n), $O(n \log_2 n)$, $O(n^2)$, $O(n^3)$, and $O(2^n)$ See the table on p. 7-43 and graphs on p. 7-44 for a comparison of these.

log ₂ log ₂ n	log ₂ n	n	n log ₂ n	n ²	n ³	2 <i>ⁿ</i>
	0	1	0	1	1	2
0	1	2	2	4	8	4
1	2	4	8	16	64	16
1.58	3	8	24	64	512	256
2	4	16	64	256	4096	65536
2.32	5	32	160	1024	32768	4294967296
2.6	6	64	384	4096	2.6×10^{5}	1.85×10^{19}
3	8	256	2.05×10^3	6.55×10^4	$1.68 \times 1\vec{O}$	1.16×10^{7}
3.32	10	1024	1.02 × 10 ⁴	1.05 × 1Φ	1.07×10^{9}	1.8 × 10 ³⁰⁸
4.32	20	1048576	2.1 × 10	1.1× 1ð²	1.15×10^{18}	6.7 × 10 ³¹⁵⁶⁵²

 Table 7.1 Common Computing Time Functions



7. Computing times of Recursive Algorithms

Have to solve a recurrence relation.

Example: Towers of Hanoi

 $\mathbf{T}(\mathbf{n}) = \mathbf{O}(2^{\mathbf{n}})$