
Dynamic LinkDynamic Link
His Requirements

As this journal was being assembled, I added a part time job to my normal

duties as a college professor. It’s a brief engagement I accepted to keep in touch

with industry and to keep my skills current, but I soon realized again why I

have a passion for systems analysis: It is the direct engagement with someone who has

a vested interest in the outcome.

“Vested interest” is only part of it. The initial interview with stakeholders started like

most with a few questions for clarification, a few ideas on the final outcome, and then it

happened as it often does. After a question was answered, I offered my usual assertion

as a question about a requirement: is that always true? That moment with a person who

would actually use the software turned into a period of exhilaration as an exception

(requirement) was discussed. A fresh bolt of energy entered the conversation.

“Exhilaration?” A “bolt of energy?” Both may sound too strong in describing what

can happen in a business meeting, but I would be willing to offer even stronger terms.

Why? It’s because this is the moment that an analyst lives for. It is the moment where

partners make a discovery. Somehow, after being buried under mounds of initial

requirements, the back and forth discussion was the spark behind the combustion that

blasted away the weighty assumptions and perceptions that buried an insight, a jewel,

that was in need of being found: the truth.

I hope we can discover “the truth” in discussions and articles about the Christian

faith as it applies to software development. This journal marks the third time where

people have unequivocally said that their faith is part of what they do when developing

software, whether that role is as the analyst, software engineer, project manager or an

expert user.

Dr. Joel Adams discusses the stewardship opportunities in developing code to lever-

age green technology. Dr. Steven VanderLeest explores the need for Christian engineers

to have a source of devotions about their craft. Dr. Victor Norman reflects on the value of

beautiful code as an extension of his faith and service to God, and this is complemented

by Mr. Bruce Abernethy’s reflection on our need to create as a reflection of His image.

Mrs. Dorinda Beeley talks about how she answered the call to bring the truth to many

through her work of supporting information technology for missionary organizations.

Finally, this journal closes with a summary of the Dynamic Link 2011 Conference. This

conference was designed to bring students and working professionals together for a day of

discussions about the Christian perspective on areas of software development. In a sense,

these thoughtful discussions are held to understand His requirements for “the truth.”

I believe the articles in this journal and the conference are opportunities where the

participants acknowledge that God is at the center of everything we do to include the

software systems we create.

Patrick M. Bailey, MS

Associate Professor

Calvin College Computer Science Department

Table of Contents

Joel C. Adams, Ph.D. 2

Carbon Footprints and Computing:
Efficiency as Stewardship of God’s

Creation

Steven VanderLeest, Ph.D. 5

Technology Devotion: Why
Christian Engineers and
Scientists Need a Devotional Life

Bruce Abernethy 8

Code’s Creative Spirit

Victor Norman, Ph.D. 10

Teaching How to Write Hospitable
Computer Code

Dorinda Beeley 12

From Skeptic to Recruiter:
How a Missions Internship
Changed My Life

Dynamic Link Conference 14

Christian Perspectives on Software Development Issue 3 2011–2012

Department of Computer Science
http://www.cs.calvin.edu

2

Carbon
Footprints and
Computing:
Efficiency as
Stewardship of
God’s Creation

Joel C. Adams, Ph.D.

Department of Computer Science

Calvin College

Introduction
In Genesis 1:26, God told the first hu-

mans to “be fruitful, multiply, and subdue

the earth.” This “subdue the earth” phrase,

in conjunction with other scriptural

passages (e.g., Psalm 8: 5-8), provides hu-

manity with the authority to make use of

God’s creation. However, since it is God’s

creation (e.g., Psalm 24:1, 1 Corinthians

10:26), humans are not licensed to abuse

the creation. Instead, we are to act as

caretakers or stewards of God’s creation.

In most parts of our world, electricity is

generated by the combustion of fossil fuels,

usually coal or natural gas. Fossil fuels are

carbon-based and combustion is an oxida-

tion process, so this combustion produces

carbon dioxide (CO2) gas. When CO2 is

released into the atmosphere, it traps heat,

which is generally thought to be a Bad

Thing. This leads to the notion of carbon

footprint: the amount of carbon—formerly

sequestered in the fossil fuel—that the use

of a given device or process releases.

Computers and Carbon Footprints
Computers, regardless of whether they

are desktops, laptops, tablets, or smart

phones, are powered by electricity. As

devices become increasingly mobile and

powered by batteries for long periods of

time, computer manufacturers are increas-

ingly sensitive to the power consumption

and carbon footprints of their devices,

to the point that some devices are now

“smart” enough to shut down idle com-

ponents, ranging from storage devices to

particular circuits within the computer’s

central processing unit (CPU).

If we think about how computing

devices consume electricity, it should be evi-

dent that a given device consumes differing

amounts of power at different times. At any

given time, the device occupies one of the

positions shown on the continuum below:

 (A) If the computer is off and discon-

nected from a power source, it is

consuming no electricity, putting it

at one end of the continuum.

 (B) If the computer is off but it is

connected to a power source, it

consumes a trickle of electricity to

keep its battery charged, its internal

clock running, etc.

 (C) If the computer is on but is in sleep

mode, it consumes a somewhat larg-

er amount of electricity to maintain

the memory states of whatever pro-

grams have been launched (i.e., the

operating system, at the very least).

 (D) If the computer is on and not in

sleep mode, but has no user pro-

grams running (i.e., it is idle), it

consumes a much larger amount of

electricity than when it is sleeping,

moving it much further down the

continuum.

 (E) As a user launches programs on the

computer, those programs use more

and more of the computer’s resourc-

es, consuming energy. On average,

each additional program launched

moves the computer further down

our continuum.

 (F) If a computer has sufficiently many

programs running that all of its devic-

es—CPU, memory, storage units, net-

work adaptors, etc.—are continuously

busy, it consumes a maximal level of

electricity, placing it at the opposite

end of our continuum from (A).

From this, we might be tempted to

conclude that the amount of electricity

used by a running, non-sleeping computer

depends on the number of programs that

are currently running on it, and this may

well be the case, on average. However,

the behavior of the running programs is

even more important than their number.

That is, one resource-intensive program

can keep all of a computer’s components

in continuous use, and thus consume the

maximal level of electricity; while a dozen

simple programs all doing nothing but

waiting for the user to interact with them

would consume a lower level of electricity.

The position of a computer on our contin-

uum thus depends mainly on the behavior

of the programs it is running.

Joel Adams

3

It follows that the carbon footprint of

a given computer can vary from zero

when it is at one end of our continuum

(i.e., off and disconnected from power)

to some maximal amount when it is at

the other end of our continuum (i.e., on,

and running programs whose behavior

keeps its devices continuously busy).

Computer Programs and Carbon
Footprints

Since the carbon footprint of a

computer depends on the behavior of the

programs running on it, let us turn our

attention to those programs.

Prior to 2006, most computers had just

one processing “core” in their CPU chips.

Such chips could perform just one action

at a time, so clever computer scientists

devised operating systems that would

“time-share” that core among multiple

programs, like people time-sharing a

waterfront cottage. The speed at which the

computer performed this time-sharing

created the illusion that all of the

programs were running simultaneously.

In those days, CPU use was a zero-sum

game: every CPU cycle consumed by one

program was a cycle that was unavailable

to another program, making it important

that programs be as time-efficient as possi-

ble. Since a program is only as efficient as

its underlying algorithm, and algorithms

are independent of implementation details

like programming language and hardware

platform, algorithm efficiency received

a great deal of attention. Computer

scientists devoted much time and effort

to crafting algorithms and data struc-

tures that could be used to solve common

problems efficiently, and they devised

formalisms like “big-oh notation” to mea-

sure and compare their efficiency (See the

insert for a short explanation of big-oh).

To illustrate, consider the problem of

sorting a list of n values into ascending or-

der. Many different algorithms have been

devised that solve this problem correctly.

Some algorithms can solve the problem

in O(n*lg(n)) time-steps, while other al-

gorithms take O(n2) time-steps to solve it.

Since n*lg(n) < n2 for positive values of n,

the algorithms that solve the problem in

O(n*lg(n)) time-steps are more time-effi-

cient (i.e., faster) than those that solve it

in O(n2) time-steps.

Or, consider the problem of locat-

ing a particular item within a sorted list

of n items. We could solve the problem

using an O(n) algorithm called sequen-

tial search, or we could solve it using an

O(lg(n)) algorithm called binary search.

Since lg(n) < n for positive values of n,

binary search is the better choice.

Big-oh notation thus provides us with

a convenient way to talk about the time-

efficiencies of different algorithms for

the same problem, and to estimate how

efficient an algorithm is. A program that

uses an O(n2) algorithm to sort a list of n

values is inefficient because it uses more

steps to solve the sorting problem than

are necessary—we know that more time-

efficient algorithms exist. In general, if the

best possible algorithm A1 for a problem

requires time O(f(n)), and we instead use

an algorithm A2 for that problem that re-

quires time O(g(n)) where f(n) < g(n), we

are not solving the problem as efficiently

as we might.

Since a computer program is just the

expression of an algorithm in a program-

ming language, the same big-oh notation

that describes an algorithm’s efficiency

can be used to describe the efficiency of a

program that implements that algorithm.

Big-oh time-efficiency can also be used

to compare two programs’ carbon foot-

prints. That is, if we have two programs

P1 and P2 that solve the same problem,

P1 solves it in time O(f(n)), P2 solves it

in time O(g(n)), and f(n) < g(n), then pro-

gram P1 solves the problem faster than P2,

using less electricity than P2, and with a

smaller carbon footprint than P2, making

it preferable from a creation-stewardship

point of view.

From a theoretical perspective, a pro-

gram that solves a problem using an op-

timal algorithm should have a minimal

carbon footprint, since it using a minimal

number of time-steps and hence a mini-

mal amount of electricity. By contrast,

a program that solves a problem using a

non-optimal algorithm will have a larger-

than-necessary carbon footprint, making

it less desirable from a creation-steward-

ship point of view.

From a practical perspective, a pro-

gram’s design can greatly affect its energy

consumption, and hence its carbon foot-

print. Some simple examples include:

 • Mobile devices like smart phones and

tablets provide value through apps for

services that let their users communi-

cate and stay “connected”. However,

the design of an app can greatly affect

its energy consumption (and hence the

battery-life of the mobile device). Ser-

vices designed to minimize communi-

cation traffic generally use less energy

and have a lower carbon footprint than

functionally equivalent services that

communicate continuously or in regu-

lar traffic bursts, especially across cel-

lular networks.

 • On a multicore computer, a program

that uses a parallel algorithm (i.e., one

that makes use of all of the processor’s

cores) should solve its problem more

From a practical
perspective, a

program’s design
can greatly affect its

energy consumption,
and hence its carbon

footprint.

4

quickly than a program that solves it

using a sequential algorithm (i.e., one

that uses just one of the processor’s

cores). If it can solve the same prob-

lem in less time, then the parallel pro-

gram may use less electricity and have

a smaller carbon footprint than its se-

quential counterpart.

These are just two of many ways in

which program design can affect a device’s

energy consumption; space limitations

prevent us from presenting more.

A program’s carbon footprint thus de-

pends on the algorithm it uses to solve

its problem and how efficiently its design

uses the underlying hardware.

Haven’t Heard of Big-Oh?
If the comments about big-oh are new to you, hope-

fully this explanation will help you understand. Big-oh is

a notation used to approximate the upper bound of the

scale of work needed to accomplish a task. Let’s say that

you are part of a group of people, and you (alone) have to

greet each person. We refer to the size of the group with

the letter “n” (number). Since you wouldn’t greet yourself,

you will greet the total size of the group less yourself. That

would be exactly “n minus one” or n-1. Now when n be-

comes very large, that “minus one” becomes negligible, so

big-oh drops that term and describes the scale of the work

as O(n) (It starts with a capital “O”, and it’s short for “on

the order of” which is why we call it big-oh!) That is the

order of how much work you must do to accomplish the

task—about n units of work.

Now imagine someone said that everyone in the group

must take a turn and give their business card to each mem-

Conclusion
We have seen that computing devices

have carbon footprints, whether they are

desktops, laptops, tables, or smart phones.

We have also seen that the carbon foot-

print of any particular device can vary

along a continuum, and that its position

on that continuum at any given time de-

pends on the behavior of the programs

that are running on it at that time. Finally,

we have seen that a program’s design can

affect its carbon footprint, and that a pro-

gram’s big-oh time-complexity provides a

means of comparing the carbon footprints

of similar programs.

In a world in which energy consump-

tion equates to the release of carbon into

the atmosphere, minimizing programs’

carbon footprints is a worthy goal for

computer scientists and software engi-

neers, especially for Christians seeking to

be good stewards of God’s creation.

Joel C. Adams, PhD (adams@calvin.edu),

is professor and chair of the Department

of Computer Science at Calvin College. He

has twice been named a Fulbright Scholar,

has designed and built several Beowulf

clusters, and has authored numerous books

and technical articles. He also enjoys read-

ing, watching movies, playing a 5-string

fretless bass, and watching his sons play soccer.

ber of the group, and it must be done one at a time. Let’s

work with a small number for this example—three people

in the group (i.e. n is three). The first person gives his busi-

ness card to the second and third person. Then the second

person gives her card to the first and third person. Finally,

the third person gives her card to the first and second per-

son. (This is very close to how things work in a computer

program—one thing at a time!) Basically each person (3 or

n) had to visit the other two (the original 3 less him or her-

self or n-1). So, if everyone followed the instructions, there

were six specific moments where someone gave someone

else a card which is the same as saying three times two. In

this example, if we substitute the number three with “n”

the exact amount of work done is “n multiplied by n minus

1” or n(n-1) = n2-n. When n is very large, the “–n” term is

insignificant compared to the n2 term, so big-oh drops the

“-n” and describes the scale of the work as O(n2).

5

Technology
Devotion:
Why Christian
Engineers and
Scientists need
a Devotional Life
Steven VanderLeest, Ph.D.

Department of Engineering

Calvin College

Peculiar Pursuit
It is a rather unusual calling: writing

devotions for Christians working with

technology.

As a Professor of Engineering at Calvin

College, I regularly start class with devo-

tions. At a Christian college, this is not so

unusual, though even here it is perhaps re-

markable to do so in a technical class such

as Introductory Electronics or Computer

Architecture. I hope my classes encour-

age students to develop not only technical

ability but also spiritual discipline. Fur-

thermore, I hope to integrate the two so

they are not simply two worthy pursuits

laid side-by-side, but a whole that is deep-

er and richer than the parts imply.

Is there an audience?
In a hallway discussion with a colleague,

we each noted that we had developed

a collection of topics we regularly used for

devotions in our engineering courses. This

led to work on a book.

We have approached a number of pub-

lishers, many of whom liked the idea, but

questioned the market appeal. They were

doubtful that many scientists or engineers

would be interested in reading religious

material about their discipline. They sus-

pected that most people working with

technology did not see any application to

their faith (or vice-versa).

This is our point and also our conun-

drum—our book would challenge and

encourage Christians working with tech-

nology to connect their faith with their

occupation. Will we be able to stimulate

interest in an audience that doesn’t appear

to recognize this need?

In this article, I hope to argue for the

necessity of connecting these aspects of

our lives and the benefits of taking this

approach.

Why would publishers suspect there

is no need? Perhaps most technologists

are atheists. No self-respecting scientist

or engineer would admit to religious as-

pects of reality, at least not publically. At

most religion is a private, individual af-

fair, but it has no place in the objective

world of technical development. Perhaps

most Christians are anti-science. No true

believer would admit that science holds

any ultimate truth, at least not publically.

At most, science has some value for cer-

tain occupations, but it has no standing to

make claims about the ultimate origins or

purpose of life and God’s creation.

I reject both propositions. Many

scientists and engineers are Christians.

Many Christians work in technology areas.

While many of us hold faith convictions,

we may in practice tend to separate out our

work by going about our daily business

with little thought about how God fits in.

Meanwhile, in theory, we believe God rules

over all—including our work.

Even if we grant that one could simul-

taneously be a Christian and an engineer

(or scientist or computer scientist), we

could still hold them as separate, iso-

lated roles. Not only might one consider

religion to be a private affair, but in the

US, one could also point to the enshrined

separation of church and state. Here too I

beg to differ: separation perhaps, but not

exclusion. Not isolation. I believe Chris-

tianity has something distinctly helpful to

say about technology development. Our

worldview and values shape the culture

and society around us. Christian faith pro-

vides important normative guidelines that

can shape technology.

Technology is no exception to God’s rule
Christ’s rule extends over every square

centimeter of the creation. Theoretically

we believe this. In practice, we tend to

give technology and science an exemption

to God’s sovereignty, not intentionally but

by omission. It doesn’t occur to us that

God might have something to say about

our work. It may be that our strong depen-

dence on science and math has lulled us

into thinking science is the ultimate ob-

jectivity. The seductive self-interest of the

scientific method has convinced us of its

claim to be the ultimate arbiter of truth.

Self-interest? What about the vaunt-

ed objectivity of science? The scientific

method may proceed by virtue of a disin-

terested experimenter, but science itself

claims to be master of its domain. Fur-

ther, it tends to over-reach, claiming that

one can best understand reality through

science and that what is real is defined

Steven VanderLeest

I hope my classes
encourage students
to develop not only

technical ability
but also spiritual

discipline.

6

by what can be measured by science.

Technical folks are particularly suscep-

tible to the problem of compartmentaliza-

tion because we do it for a living. Good

programming practice includes abstrac-

tion and modular design. In order to un-

derstand and control, we break down big

problems into step-by-step solutions. We

avoid control and data coupling across

large, complex systems because the inter-

actions are difficult to predict and bound.

While a divide and conquer approach

to technical problems is an effective tool

to deal with complexity, this method can

also lead to problems. When we examine

the parts in isolation, we miss essential

behaviors and interactions. Compartmen-

talization of life and reality itself misses

the essential and foundational character-

istic of God’s sovereignty. This is the same

sin as boxing up worship for Sunday only,

leaving faith behind on Monday morning.

Bridging the gap between technolog-
ical work and faithful worship

Technology and faith are not mutu-

ally exclusive and putting them together

produces an interesting fabric. Because

the connections are not always obvious,

I write my devotionals to help tease out

some threads that demonstrate the rela-

tionship. This section enumerates a few

aspects of the interplay between the two.

Faith guides technology
Faith convictions ought to guide our

technological pursuits. Consider a couple

examples.

First, God made us with the ability to

develop technology. Technology is part of

what makes us human. We were created

to create—as much homo faber (man the

maker) as homo sapiens (man the wise).

Part of the imago dei is the human ability

of creativity. We reflect the creator when

we invent, design, and develop. We were

also created to steward. Part of the call to

stewardship is to care for and cultivate the

creation. As stewards, we unwrap the

gift of creation by thoughtful develop-

ment of culture and society.

While preserving creation is also part

of that call, this does not mean keeping

it in a static, so-called pristine condition

that shows no mark of humankind. That

would be like burying the one talent with-

out investing it (like the “wicked, lazy”

servant of Matthew 25:26). Instead, we

should help the creation to flourish, nur-

turing new development and growth while

protecting beauty and grandeur. Creativity

is thus a tool of stewardship.

A second example of faith guiding our

technical work is recognition of our re-

sponsibilities related to the technology we

develop. The scientific patina of our tech-

nology misleads us into thinking technol-

ogy is objective, unbiased, and neutral. It

is not. The technology we develop reflects

the values and desires of the human cre-

ators, even when the designers intended

to be objective. Technology is always a

means to an end. The problems we choose

to solve and the tools we develop as so-

lutions have biases—at the very least to-

wards the goals we had explicitly in mind,

but additional biases also sneak in without

our conscious intent.

Technology itself does not have moral

agency. Consider a hammer developed

for pounding nails but used by a criminal

to strike and kill a victim. The hammer

is not responsible for murder—only the

criminal is accountable. But most cases

are not so simple. Technology embodies

responsibility and bias. Consider a medi-

cine that is developed for curing disease

by a manufacturer using careless methods

and unsanitary conditions, resulting in

deaths. The medicine is not responsible

for murder—but where is the wielder of

the weapon? Who is responsible? Is it the

manufacturer (and possibly others in the

“chain of custody” of this product)? Re-

sponsibility traces a thread from user to

seller to manufacturer to designer. Each

bears some accountability for the results

produced by technology. Carelessness,

negligence, cutting corners, or failure to

recognize consequences can all result in

harm from technology. While technology

has no agency—it cannot act on its own—

it embodies the volition of its creator and

user. The harm or good that technology

produces is a telltale sign of this bias. That

bias implies our responsibility.

As Christians in technology, the call to

care for our neighbor implies that we take

responsibility for our products seriously.

Technology is a powerful tool that amplifies

human vice: a human with a gun is much

more dangerous and likely to kill than one

without. Technology also amplifies human

virtue: a human with a telescope can see

farther and is much more likely to develop

insights about distant space objects and ap-

preciate the astronomical scale of God’s cre-

ation. Each time we develop new software

or a new device we let a powerful genie

out of the bottle. Christians in particular

should pause to reflect before releasing the

genie. Pause to feel the weight of responsi-

bility to cultivate creation through technol-

ogy development; pause to feel the weight

of the call to care for our neighbor.

The best technological designs can glo-

rify God and serve his kingdom by dem-

onstrating responsible and appropriate

design practices through the embodiment

of virtues such as love, caring, humility,

justice, mercy, and stewardship. We need

these virtues in full measure because our

tools also raise some of the most vexing

ethical questions in society today. In the

last century we have developed multiple

Technology and
faith are not

mutually exclusive
and putting them
together produces

an interesting fabric.

7

technologies that can wreak global de-

struction such as nuclear or biological

weapons, or even grey goo (the nanotech-

nology doomsday scenario first envisioned

by Eric Drexler). We are temptingly close

to creating life through genetic cloning,

artificial intelligence, or downloading our

brains into machines. These technologies

pose deep philosophical questions that

Christians need to tackle with scriptural

principles to guide our thinking. The

power of the technology we create stands

in stark contrast to the fallible and frail

humans that created and use the tech-

nology. The virtue of humility curbs the

hubris technology so easily promotes.

Technology enlivens faith
While our faith ought to guide our

development and use of technology, the

reverse is also true. Technology can guide

development of our faith, helping us

understand and worship our God.

Because tool-making is in our blood, we

tend to build mental models of the world

through technical metaphors. Think about

all the shorthand phrases we use daily to

represent complex ideas through technical

analogy: pushing his buttons, turning the

crank, driving her crazy, or I’m just a cog

in the wheel. Why shouldn’t we use tech-

nical metaphors to help us understand and

discuss our faith too?

Scripture itself uses the imagery of

potter and clay to describe God’s sover-

eignty. The metaphor of tools applies to

us: we are not only the tool-maker, we

are also the tool. The computer produces

garbage out from garbage in, providing a

metaphor for the damage we suffer from

spiritual debris that clutters our lives.

Technology done well can help us

worship God. It gives us devices to un-

derstand creation better. It gives us tools

to cultivate the natural resources God

gives us. Technology done well can help

us serve God by serving our neighbor. It

gives us devices to heal wounds. It gives

us tools to help humans and all creation

to flourish.

Epilogue
My colleague and I are continuing

work on a book of devotions. In order to

provide evidence to publishers that there

is indeed an audience, I have also been

writing a blog on the connection between

technology and Christian faith, called

Deus Ex Machina (God in the Machine).

Every couple weeks I post a new devotion-

al, you can find them on http://www.calvin.

edu/weblogs/deusexmachina/.

Steve VanderLeest is a Professor of Engineer-

ing at Calvin College, Vice-President of

R&D at DornerWorks (an embedded sys-

tems engineering company), and a partner

at squishLogic (an iPhone app development

company). His publications span technical

areas such as computer performance

measurement and safety-critical design

methods, technology philosophy topics

such as technological justice and responsible

technology, and technology education topics

such as design and entrepreneurship.

The best technological
designs can glorify

God and serve
his kingdom by
demonstrating
responsible and

appropriate design
practices through
the embodiment
of virtues such as

love, caring, humility,
justice, mercy,

and stewardship.

8

Code’s Creative
Spirit
Bruce Abernethy

Senior Architect, CQL Inc.

This summer I walked past a

boy who was busy drawing in

a sketchbook with his friend

beside him—he was clearly quite involved

with his current effort. His friend saw me,

smiled and waved me over as if to say

“Take a look at this.”

I started over to meet these total

strangers. As I got closer the friend said

something to the effect of “He just saw

this scene a few minutes ago and is busy

drawing it out.” I am no art critic, but

the picture that was unfolding using just

a basic pencil on a wire-bound notebook

looked as if a black and white photograph

had been taken—but more than that. He

also captured the dynamics and motion,

and even emotion, of the scene. I believe

that he has no memory of this chance

meeting on a summer day, but this amaz-

ing display of skill and creativity has had

quite an impact on me ever since.

What is it about engaging in the act

of creation that is so compelling to people

everywhere? Whether it is kids build-

ing sand castles or adults doing crafts

or restoring old cars—people who are

engaged in actively creating any kind

of project are often the most happy and

fulfilled people I have ever talked to. And

that definitely includes people involved in

the design, architecture and development

of computer software.

Since I was quite young I was impacted

by the reading and re-reading of the story

of Creation, particularly the idea that how

we as humans were created intentionally

by God and in the “Image of God”. Among

the many implications of this reality are

that we take on many of the communica-

ble aspects of God which includes wisdom,

knowledge, goodness, freedom, grace, per-

fection, beauty, and, I believe, creativity.

While God is ultimately the Creator and

Sustainer of all things, we are important

parts of this creation as we act as the mak-

ers and fashioners—the “hands and feet” if

you will—of God’s ongoing plan.

Bezalel and Oholiab—The Creative
“Makers” of Judah

In Exodus 35 Moses told about when

“[…] the LORD has called by name Beza-

lel the son of Uri, son of Hur, of the tribe

of Judah; and he has filled him with the

Spirit of God, with skill, with intelligence,

with knowledge, and with all craftsman-

ship, to devise artistic designs, to work

in gold and silver and bronze, in cutting

stones for setting, and in carving wood,

for work in every skilled craft.” (ESV)

I believe that God does fill, equip and

enable gifts and talents among his peo-

ple. That includes the ability, creativity

and motivation to complete great works.

People sometimes ask why I still try to do

some kind of programming, every day, af-

ter more than 30 years of “playing with”

computers. While there are many compel-

ling aspects to the craft of software design

and development, the major satisfaction I

can testify to, over and over again, is to be

part of the work that is done to design and

build something that never existed before,

work that is done well, and work that

meets a need for other people. The Ro-

man poet Juvenal talked about cacoethes

scribendi which is loosely translated as the

“insatiable desire to write”—I believe this

is experienced today, by many inspired

coders, designers and makers.

Attracted to Beauty and Good Design
Paul reminds us in Philippians 4:8 that

“...whatever is true, whatever is honor-

able, whatever is just, whatever is pure,

whatever is lovely, whatever is commend-

able, if there is any excellence, if there is

anything worthy of praise, think about

these things.” (ESV)

Why are people attracted and excited

by one piece of software or hardware over

another one? Why do some people have a

nearly religious attachment to their iPhone,

love playing with the Wii, never want to

give up their TiVo, never leave home with-

out their BlackBerry, and have hundreds of

lifetime hours into Tetris? Why was the

world-wide web the app that made the

Internet a must-have utility? Why do I still

have a Macintosh SE/30 and Newton on a

prominent shelf in the basement and make

a point to “light them up” a few times

a year to make sure they are still OK? In

a nutshell it is because these devices and

services seem to have something inherently

“right” or good about them—they are

excellent at what they are created to do.

Beautiful Code
Software developers see this in well

written code. When you have written

enough code you develop a sense when

you see some really excellent or even

elegant code segments. When one of these

segments or algorithms is good enough

that it needs to be remembered, it is

often given a description or name such as

a “binary search”, “bubble sort” or “travel-

ing salesman” and others. One of the great

benefits of the Open Source movement

is that it has made the source code for a

number of very well written and large scale

software systems available for anyone to

review and use. While non-programmers

may think it is an odd pastime, the regular

“pleasure reading” of a variety of different

Open Source projects can be educational

and inspiring. It is interesting that you

never really know which of this code is

written by Christians or not, but common

grace enables wonderful contributions to

all who are created in the image of God.

I believe that God
does fill, equip and

enable gifts and talents
among his people.

9

Bruce Abernethy

To software “artisans” who take the

time to learn, practice, and understand the

craft of software development, there is an

awesome beauty and order in a solution

that is done well.

Inspiration from Creation
Psalm 111:2 “Great are the works of the

LORD, studied by all who delight in them.”

Many of the great pieces of art and

music are inspired by the Creation around

us. I am reminded of the incredible pow-

er of recent videos of the Tsunamis, the

beauty in the colors sunset, or awesome

time-lapsed sequences of the International

Space Station orbiting the Earth—all the

best artists and computer generated anima-

tions cannot come close to the “real thing”.

Recently there has been an interesting

trend in hardware and software design to

revisit “Natural User Interfaces” like mo-

tion, touch, gestures and voice. The popu-

larity of the Nintendo Wii game console

came largely as it enabled natural move-

ments and full-body motion—enabling

it to outshine and outsell competitors in

the market with far superior graphics and

sound. The “touch, swipe, and pinch” in-

terface of the iPad have attracted nearly

30 million users to use a tablet after years

of disappointing adoption of devices that

required a keyboard or stylus to complete

many operations. Now the Microsoft Ki-

nect controller for Xbox and personal

computers is enabling complex interac-

tions between people and machines that

were never before possible using even

more natural motions, gestures and voice

commands. Humans are naturally com-

pelled and pleased when they can interact

with hardware and software in a way that

seems natural to them. Drawing inspira-

tion from Creation can enable people to

do far more things, far more quickly and

easily, than they ever could before.

Share with Others
Another very rewarding part of being

a software developer is the opportunity

to give back and participate in the larger

community of software developers. Resi-

dents of West Michigan can attest to the

amazing phenomenon that has come with

having the ArtPrize competition these

past years with an amazing array of art

and visitors from around the world. Per-

haps more often heard (especially from

kids) is something like “That doesn’t look

too hard—I could even do that …” Exact-

ly! Great work inspires others to do great

things.

While learning experiences for soft-

ware developers can include classic train-

ing and national conferences, I believe

there can be a richer experience in settings

like user groups, “bar camps”, and “open

spaces” where all participants are encour-

aged (or required) to be both consumers

and presenters.

We had a great experience attend-

ing the Maker Faire in Detroit this year.

Nearly every kind of hardware, software,

invention, art, performance, experience,

or competition that is being worked on

throughout the world was present at the

exhibition. But more than that, the makers

and inventers themselves were available to

show and explain their works and in many

cases attendees were able to get “hands

on” with skills and technologies that they

may not have experienced before—where

else can an eight-year old be allowed or

encouraged to learn to solder LEDs on to

a lapel-pin that they can take with them

when they go (and for only $1).

For Good Works—To the Glory of
God

Continuing in Exodus 36, “Bezalel and

Oholiab and every craftsman in whom the

LORD has put skill and intelligence to know

how to do any work in the construction

of the sanctuary shall work in accordance

with all that the LORD has commanded.”

And Moses called Bezalel and Oholiab and

every craftsman in whose mind the LORD

had put skill, everyone whose heart stirred

him up to come to do the work. (ESV)

An important part of our life as Chris-

tians is to complete and be part of good

works to bring glory to our Creator. If

we use the talents and gifts we have been

blessed with, to create beautiful and admi-

rable works, and are ready and willing to

share what we have learned and accom-

plished with others—people will notice.

God is the Creator of all that is good and

beautiful, and the giver of gifts and talents.

Man is the maker or fashioner and should

use their skills and accomplishments not

for their own glory, but to draw people to

God. If we as software craftsmen develop

our skills and creativity, do our jobs right,

work as we are called, share freely with oth-

ers around us, and are ready to “give the

reason for the hope” that we have when

others ask (1 Peter 3:15-16), then we will

have answered the call and done our part in

introducing others to our amazing Creator.

Bruce Abernethy (bruce@abernethy.com,

@babernethy) is a software architect,

developer, a husband, a father of three, and

serves in the leadership of Boy Scouts and

Teen Bible Challenge. His current focus

is web development, mobile web/app

development, online marketing, social

media and line-of-business applications.

Bruce regularly speaks at user groups,

regional conferences and coffee shops.

10

Teaching
How to Write
Hospitable
Computer Code
Victor Norman, Ph.D.

Department of Computer Science

Calvin College

Introduction
Prior to coming to Calvin College, I

worked as a software development engi-

neer in three different companies for a total

of 14 years. I loved, and still love, to write

computer code, as I find writing code to be

a creative outlet. At about the eighth year

of my time at the first company, I began to

notice I was repeatedly assigned to work on

products that went to completion, but nev-

er sold any units. That is, the software and

hardware were designed carefully, imple-

mented, tested thoroughly, packaged, and

marketed, but the initial design given to

us software engineers resulted in a product

that none of our customers wanted. This

realization made me think about my role

as a software engineer, and why I spent so

much time and effort working so hard to

create software that no one would ever use.

If no one was going to use this product,

why bother working so hard? Why both-

er working so diligently to get the design

correct? Why bother reviewing the code?

Why bother writing, reviewing, and imple-

menting test plans, and then fixing bugs for

weeks and months on end? Why bother re-

viewing my own code to make it “perfect”,

with excellent documentation, excellent

naming, and excellent design?

From these musings, I came to two

conclusions. First, as a Christian I was

called to do my work diligently as an offer-

ing to God, even if no human being would

ever run my code or use the product I was

helping create. Second, I had to continue

to create the best code I could, write the

best documents I could, and document

the code the best I could, even though the

code may never benefit any human being.

Now I, as a Christian professor, try

to teach my students these same lessons.

First, the students must learn not only how

to write code that produces the correct out-

put, but also create what I now call hospi-

table code. In other words, I teach that not

only the function, but also the form of the

code matters, to me and to God. I explain

to students that this is code written for

two “consumers”: the computer that will

execute the code, and also others who will

come later to review, understand, modify,

borrow, and extend the code.

You may ask, Who looks at computer

code after it is written? To answer this

question, one needs to know about a typi-

cal software lifecycle.

Software Lifecycle
There is a saying in the software devel-

opment community: Code is written once,

but read a thousand times. This saying il-

lustrates an important point: a programmer,

when writing code, needs to remember that

he or she is not just communicating with

the computer, but also communicating

with those that come later, who will have

to read and understand the code.

In my experience in software develop-

ment, after code is written, the program-

mer himself must read and debug the

code. Then, the programmer’s team holds

a formal “code review” in which the team

reviews all code in the project, looking for

bugs, poor coding style, missing documen-

tation, etc. Then, during final integration

testing, stress testing, and release testing, a

larger group of developers and testers may

need to read and debug the code.

Even after the code has been released

as a product, it will likely need to be read

again. (The lifetime of a typical program

is 20 years or so.) In most companies,

software goes through multiple revi-

sions—1.0, 2.0, 2.1, 3.0, etc. These revi-

sions differ in two ways: new features are

added, and existing defects are fixed. In

the latter case, when code is being fixed,

software developers spend many hours

reading the existing code, looking for the

defects. However, even when new features

are added, it is often the case that pro-

grammers borrow and alter large portions

of existing code to add a new feature.

So, code is read often after it has been

written, and thus, the readability (or

“form”) of the code matters. But, what

does it mean to write hospitable code? I

address this question next.

Hospitable Code
Most people, when expecting guests, try

to make their home hospitable by cleaning

it, lighting it properly, making it comfortable,

and warm. They prepare food and drink, and

perhaps, entertainment. In short, they make

the space welcoming. I teach my students

that hospitable code gives the reader of the

code this same sense of being welcomed, a

sense of warmth, and a confidence that the

code was created with care. Hospitable code

welcomes the reader to come in and be com-

fortable, to enjoy the cleanliness of the code,

to feel at home, and to see that the space has

been carefully prepared with guests in mind.

How does one do this with computer

code? A programmer has many choices to

make when writing code, many of which

affect the readability of the code. Let me

give three examples of choices the pro-

grammer has which can affect the hospi-

tality of the code.

 • Clear and descriptive variable names.

A line of code as simple as

 a = 92

 can be improved and be made more

hospitable to the reader simply by

instead being written:

minAGrade = 92

 When a reader encounters the first line,

the reader may not immediately under-

stand the purpose of the code. This may

make the reader anxious that he is al-

11

Victor Norman

ready losing understanding of this code.

However, if the reader instead encoun-

ters the second line, he can intuit imme-

diately that the code uses this variable to

indicate the minimum score that is an A

grade. Thus, the reader is left more confi-

dent that he understands the code so far.

 • Proper in-code documentation (i.e., com-

ments). All programming languages

(that I know of) allow comments to be

written in the code. These are lines that

are not executed by the computer, but

are written only to communicate with

a human reader of the code. The proper

level of documentation in the code ex-

plains to the reader any tricky or non-

obvious steps or structures in the code.

 • Consistent indentation. All modern pro-

gramming languages contain control

structures that cause the code to execute

code conditionally or repeatedly. The

coding structures can become nested

within one another. For example, here

is a piece of code that is not indented:

 foreach elem in aList {

 if (elem.score < 60)

 { newList.append(elem);

 aList.remove(elem);

 }

 }

 Understanding this code is difficult.

However, if I indent the code consis-

tently and carefully, it becomes much

easier to see that the code removes all

elements from aList have scores less

than 60, and adds them to newList.

 foreach elem in aList {

 if (elem.score < 60) {

 newList.append(elem);

 aList.remove(elem);

 }

 }

 If one does not indent the code con-

sistently, then the reader will find it

difficult to determine how control

flows through the code. This difficulty

can undermine the reader’s confidence

in understanding the code’s logic.

Why Christians Should Write
Hospitable Code

In my classroom, I emphasize to

students that they must get in the habit

of writing hospitable code, because it is

the Christian thing to do (and it is the

only way to get a good grade in my class).

I explain that a Christian should write

hospitable code for these reasons:

Hospitable code is code written with
others in mind.

I have argued above that a programmer

writes code not only for a computer to ex-

ecute, but also for others to read, modify,

and re-use. Thus, the Christian computer

programmer should write code keeping in

mind that this code needs to serve others

in the community. The programmer should

have a servant’s attitude, looking toward the

needs of others. This is a Christian attitude,

clearly demonstrated by Jesus Christ, who

came not to be served, but to serve. The

temptation for many programmers is to

think that the code just needs to have the

correct functionality, and its form does not

matter. The Christian should remember that

both functionality and form matter to those

people who come later to use this code.

Hospitable code is code can be
written to serve God.

A Christian can serve God by writing

hospitable code, because the Christian is

doing his or her best to create code that

is readable, correct, and looks to serve the

needs of others (1 Peter 4:8-11). I remind

my students that writing computer code

is a creative effort. (In fact, creating com-

puter code is my personal creative out-

let—it is one thing I enjoy doing in my

“off hours.”) In creating code, we emulate

God in his acts of creation. In fact, the first

characteristic we learn about God is that

he is a creative being (Gen. 1:3). However,

to truly emulate God’s acts of creation, we

must create things that are good. I teach

my students that one way to create “good”

programs is to write hospitable code.

Creating hospitable code
demonstrates integrity
and God’s lordship over all.

I emphasize to my students that func-

tion and form both matter, to me and to

God. God judges us not only by what we

do, but also by who we are. Similarly, we

need to create code that is “good” through-

out the creative process. We don’t want to

be pharisaical in our creations, creating

code that is a “whitewashed tomb”—beau-

tiful on the outside, but ugly on the inside

(Matt. 23:27). I believe considering the

form of computer code to be important is

a truly reformed attitude, and I believe it is

also acknowledges God’s lordship over all.

Victor Norman (vtn2@calvin.edu) is an

assistant professor of computer science at

Calvin College in Grand Rapids, MI. Before

becoming a professor, he worked as a soft-

ware engineer for 14 years in the networking

and file system industry. He currently teaches

introductory programming (in python) and

networking classes. He has a passion for mis-

sions, and will be taking a group of 8 students

to England in January to do some program-

ming with a missions organization for 3 weeks.

12

From Skeptic
to Recruiter:
How a Missions
Internship Changed
My Life
Dorinda Beeley

LightSys Technology Services

The laptop and printer and digi-

tal camera are essential to our

ministry,” the missionary shared.

“Many supporters don’t understand why

these expenses are necessary.”

It was the summer of 2000. I stood in a

tiny apartment, chatting with an inner city

missionary and his wife. And I didn’t agree

with a thing the missionary was saying. I

agreed with those supporters. None of my

friends had digital cameras. Why did a

poor missionary need one? If you’re living

life on a missions budget, you don’t need

to splurge on technology, do you?

Computer major though I was, I

saw little need for missionaries to spend

supporters’ money on electronics.

Fast forward three months. The hunt

was on for my required computer intern-

ship when a cousin heard of the search.

“Have you thought about doing an in-

ternship with Gospel for Asia?” he asked.

“We were praying this week for an IT intern.”

I said I wasn’t interested. Oh, I wasn’t

against missions. Promoting missions had

been part of my church responsibilities for

years. But doing computer work at a mis-

sion organization? That was just strange.

Two months later. Other opportuni-

ties closed. As a last resort, I called the

IT director at Gospel for Asia (GFA). An

application and several conversations

later, I was accepted as an IT intern at

GFA for summer 2001. And boy, did I

have a few lessons to learn!

Lesson #1: Missions IT is a necessity,
not a luxury.

My first job was helping with a gateway

IP address change. This gave me exposure

to how many computers there were in the

office and how they were used. I was sur-

prised! The staff depended on their com-

puters for almost everything: contacting

churches, processing donations, tracking

finances, selecting mailings for donors,

communicating with oversees offices, re-

sponding to donors, assembling the maga-

zine, designing banners for conferences,

and almost everything else.

A small, but neatly wired data center

housed a phone system, routers, switches,

databases, a print server, email servers,

Linux firewalls, NAS, and VPN servers.

They had more servers than my college

did! If the network went down for some

reason, the office workflow slowed to a

near-halt. It was obvious that IT was not

a “luxury.” It was the essential electronic

backbone that kept the office running.

Lesson #2: Missions IT is more than
computers—it is ministry.

Three days a week, the staff gathered

for an hour of prayer before the workday

even started. The other two days, we of-

ten prayed as a department. Every Tuesday

night was an all staff and families prayer

meeting and it was considered crucial to

be there.

Prayer was not just about the mission

field. While we spent time in prayer for

that, we also prayed for the building main-

tenance, the accounting department, the

paper folding machine that quit working,

and the database upgrade.

The first time an IT co-worker shared a

prayer request for an IT problem, I think I

laughed. But I watched the answers come

time after time and I began to realize,

“These people are serious about depend-

ing on God—even for the IT solutions!”

The relationship side of ministry also

caught my attention. I’ll admit—I was not

the model of a perfect intern. While I was

brought on for a specific database project, I

didn’t have the experience or know-how to

get the project done. This left my coordina-

tors needing to define a new project for me.

But outside of the projects (or despite

the projects), I found my coordinators were

most interested in me. They wanted to know

how I was doing. They invested their time

in teaching, correcting, encouraging, and

exhorting me—spiritually, personally, and

professionally. That befuddled me. After all,

I was just here for an IT internship, right?

It took most of the summer, and even

beyond, for me to realize that computers

are only a part of what Missions IT

encompasses. Missions IT is ministry. It

is worship. It is prayer. It is about God.

Lesson #3: Missions IT is a lever,
not just a necessity.

One of my internship responsibilities

at GFA included software training for the

staff as the office changed from one email

client to another. I like training people,

but I really dislike the time required to

create documentation. I complained one

day to my project supervisor.

“If we want the staff to be doing things

that will help reach the unreached, why

are we pulling them out of their offices for

an hour for this training? And why am I

spending 40+ hours getting this training

ready? Surely there is something else I can

be doing that would better use my time!”

His response showed me the bigger

Missions IT is ministry.
It is worship.
It is prayer.

It is about God.

“

13

picture. “People can easily waste 15 min-

utes a day trying to figure out how to do

something on their computer. If we can

provide training that saves 50 staff people

each 5 minutes a day, 5 days a week—

that’s twenty additional hours a week that

the staff have to call pastors, talk to do-

nors, partner with missionaries. We can

plant churches this way!”

That theme continued through each

area of IT. The IT staff wasn’t hyped over

the latest techie toys or the hottest new

server product on the market. Their ques-

tion was: “What technology will make us

most effective for the kingdom of God?”

“God has given us technology as a

tool,” my supervisor said. “And I want to

use that tool as a lever! How can we use

technology to make our staff more effec-

tive in their work for the Kingdom? How

can we use technology as a lever to multi-

ply our efforts and reach more people with

the Gospel?”

Computers were not just a tool that the

mission used because they had them. It

was a vital tool—a lever that they wanted

to use to propel the Gospel forward at an

even greater rate.

Lesson #4: Getting involved with
Missions IT may change your life.

I left GFA at the end of the summer

knowing, but not fully realizing, that my

life would never be the same.

The need for more laborers for the mis-

sion field was now a part of my thoughts.

80,000 people that die every day with-

out ever having heard our Savior’s name.

300,000+ villages in India alone that have

never had a Gospel witness. Missionaries

that labor for 12-18 hours a day, but are be-

sieged with still more people asking them

to come share the Gospel in their towns.

We needed more missionaries, more staff

to support those missionaries, and more

IT staff to support the infrastructure.

I knew those things now. And God

was going to hold me accountable for that

knowledge.

Lesson #5: It’s all about God.
I journeyed my senior year of college

asking, “Lord, what do you want me to

do?” I had to be involved. But beyond

prayer, did God want me to earn wages and

financially support the missions work? Or

did He want me personally as one of the

Missions IT laborers?

There wasn’t an audible voice of God or

a super-spiritual “call.” Just simple peace to

go ahead and interview with GFA after grad-

uation. When the door opened for me to

join GFA’s staff full-time, I walked through.

The last ten years have been an incred-

ible journey—raising financial and prayer

support as a state-side missionary, serving

at GFA for seven years, traveling to India

to see the mission work there, meeting

my husband at a computers in missions

conference, and now serving a variety of

mission organizations through LightSys

Technology Services.

The longer I’m in Missions IT, the

more I see how much of a lever technol-

ogy can truly be as we spread the name

of Christ throughout the world. From

back office servers to front line evange-

lism, from Bible translation software to

electronic Bibles in closed countries, from

secure communication to discipleship via

mobile devices, from the obvious to the

things one wouldn’t imagine—Missions

IT is one of the greatest tools we have for

advancing God’s Kingdom.

But it’s not about us or the computers;

it’s about God. It’s about His worth. His

glory. It’s worshipping Him in our colleg-

es, our workplaces, and our lives. It’s re-

membering that half the world is waiting

for someone to tell them of the one true

God so that they can worship Him too.

What part is God calling you to
play? Are you willing?

Dorinda Beeley is an ’02 CIT graduate of

Sterling College. She’s passionate about

Missions IT and loves to share that passion

with college students and IT profession-

als. Dorinda and her husband, Greg, serve

with LightSys Technology Services (URL

http://www.lightsys.org) providing free of

charge IT support for missions. Interested in

Missions IT? Looking for an internship?

Contact Dorinda at Inquiries@lightsys.org.

Dorinda and Greg Beeley

14

Dynamic Link
Conference 2011

Calvin College’s Information

Systems 371 class (IT Leadership)

organized the the 2011 Dynamic

Link Conference which was held on April

30, 2011 at the Devos Communication

Arts and Science Building on the Calvin

College Campus.

The purpose to Dynamic Link is to pro-

vide a forum where computing students

and guests, which include software indus-

try professionals, can meet to discuss the

role of faith in software development.

The theme of the 2011 conference

was “The Christian Responsibilities of IT

Leaders.” The conference opened with

keynote talks, followed by an afternoon of

focus groups which included lunch. The

keynote speakers were Dr. Paul Jorgensen

and Mr. William Noakes.

Dr. Jorgensen is a professor of comput-

er science at Grand Valley State University.

He is the author of text books in software

testing and software behavior modeling.

His book, “Software Testing—a Crafts-

man’s Approach,” is now in its third edi-

tion and is one of the primary references

for software testing in the ACM and IEEE’s

Software Engineering Body of Knowledge.

Prior to an academic career, Dr. Jorgensen

was a manager of software testing for some

of GTE’s most significant projects.

Mr. Noakes is President of the No-

akes Group, a private consulting company

providing services and advice to “C” level

executives. He also had the dual role of

General Counsel and Chief Information

Officer at Meijer. Prior to joining Meijer,

Mr. Noakes’ career included service with

the Security and Exchange Commission,

membership in GM’s legal staff, appoint-

ments to positions of public service and an

engagement as a commentator on Court TV.

The Discussion Groups
Guests and students were organized into

three discussion groups in the afternoon.

Prior to the conference, the students were

assigned to one of the specific groups with

a student leader and a guest co-facilitator.

The students researched the topic for their

group and prepared a recommendation and

presentation. After the presentation, the

students and guests engaged in discussions

that resulted in a set of recommendations

provided at the end of the conference. The

groups, the facilitators, the topics and an

abridged version of the discussion summa-

ries by the students follow.

Group A Facilitated by Melissa Bugai
(Consultant) and Matt Bushouse (stu-
dent)—Lost Opportunities: Is There
a Corporate Responsibility to Attract
Women to Computing Professions?

“… As the team preparing for the discus-

sion, we believe that women are currently

not attracted to computer science, but we do

not believe that any one social entity is re-

sponsible for this trend or its correction. We

believe that this trend may very well change

because of the increased pervasiveness of

computing in ways that will appeal more

to women, provided there is a concerted ef-

fort to change stereotypes and perceptions of

computing as a career.

“The discussion group concluded as a

whole that gender diversity is a subject in

great need of redress; there is a vast untapped

reserve of talent that can bring new and valu-

able perspectives to the field. … Perhaps the

best way to address this gender split is through

dismantling the negative stereotypes. This

can be accomplished by directly hiring more

women, making the field feel less isolated from

other people, designing computing clubs that

focus on women and their social desires, and

encouraging those in the workforce to com-

municate the current industry to the schools.”

Discussion Group B Facilitated by
Dr. Roger Ferguson (GVSU) and
Nana Owusu-Achau (student)—The
Call for Responsible Software Devel-
opers: Should Society Require Licens-
ing for Software Engineers?

“Unlike traditional engineers, software

engineers are not required to be licensed. They

are free to practice their profession without

government supervision. Before the discussion

took place, the students preparing for it felt that

this arrangement was incredibly irresponsible

and felt that the government has a responsibil-

ity to its citizens to protect against poor code.

“However, the discussion group concluded

that now is not the time to force licensing on

software engineers. It was noted that as any

field matures, the licensing often starts when

it is appropriate, and the requirements for the

licensing become stricter as the field matures.”

Group C Facilitated by T.R. Knight
(Taylor University) and Ken Echti-
naw (student)—It’s Still There: Do
Chief Information Officers Have an
Inherent Responsibility to Identify
and Address the Digital Divide?

“Group C was tasked with exploring the

digital divide that many interpret as a grow-

ing problem in our technologically driven so-

ciety. However, we did not focus on the digital

divide in the traditional sense, where the prob-

lematic gap is perceived between those who

have technology and those who do not; rather,

we looked carefully at the growing gap as it is

expressed in countries where the technology is

readily available, but many of its users are ill-

equipped to take full advantage of its resource.

“Although details were debated through-

out our group’s discussion, a shared conclu-

sion was somewhat organically formed. The

extent of a CIO’s responsibility to both address

the issue of a digital divide and be proactive

in a solution remained inconclusive, but the

group did agree that, particularly as a Chris-

tian CIO, there is an inherent responsibility to

be proactive in the matter. “

*The discussion papers for each group are available for reading at http://cs.calvin.edu/p/DynamicLink

15

Dynamic Link 2011 Conference Discussion Groups (S) = Student, (G) = Guest

Group A: Brent Sloterbeek (G), MariLou Richardson (G), Aravind Ranganathan (S), Aaron Koenes (G), Sarah Frisch (S),
Melissa Bugai (Guest Co-Facilitator), Kent Voskuilen (S), Raylene Bradshaw (S),Cameron Boot (S-Master of Ceremonies),
Erin Bushouse (S), Matthew Bushouse (Student Leader)

Group B: Nana Owusu-Achau (Student Leader), Brian Williams (G), Randy McCleary (G), Roger Ferguson, Ph.D. (Guest
Co-Facilitator), William Noakes, JD (Keynote), Andrew Cooper (S), Robby Hoekstra (S), Brian Derks (S), Paul C. Jorgensen, Ph.D.
(Keynote), Sim Vanderbaan (S), Chris Brown (S), Joel Adams, Ph.D. (Chair, Calvin Computer Science), Victor Norman, Ph.D.
(Calvin Computer Science)

Group C: Carissa Barents (S), Joe Girolamo (S), Nicole Veenkamp (S), Denise Mokma (G), Rick Devries (G), Brian VanderZee
(G), Ben Van Drunen (S), T.R. Knight (Guest Co-Facilitator), Kari Witte (S), William Vriesema (G), Barbara Egeler-Bailey (G),
Ken Echtinaw (Student Leader), Priscilla “Yosh” VanOmen (G)

16

This journal is a publication of the Calvin College Department of Computer Science.

More information about the department is available at http://www.cs.calvin.edu.

Computing@calvin.edu
If you would like to propose an essay for the next release of Dynamic Link, be a participant in the next Dynamic Link

Conference or offer a donation to support Dynamic Link, contact us at the email address above. Thank you!

The organizations below provided significant contributions to make this journal possible.

We are grateful for the individual contributions from the following:

Terry Woodnorth, Endicott, New York

Patrick and Barbara Bailey, Grand Rapids, Michigan

www.ccel.org

